Analisis Batas Keamanan Struktur Kamar Mesin Kapal Katamaran akibat Penambahan Beban di Atasnya menggunakan Simulasi
Abstract
Modifikasi pada suatu struktur yang telah jadi kerapkali meninggalkan masalah, di mana penguatan tambahan diabaikan. Pada objek penelitian ini muatan ditambah pada daerah di atas kamar mesin kapal katamaran bermaterial aluminium alloy. Penelitian ini bertujuan merekomendasikan batas berat yang dapat diterima struktur dalam batas aman struktur. Kecelakaan dapat dihindari dengan mengetahui kapasitas ruang yang dapat digunakan. Metode simulasi masih lebih efisien dan banyak digunakan karena hemat biaya, waktu dan tenaga dengan hasil yang valid. Simulasi digunakan pada penelitian ini untuk memperoleh nilai tegangan kerja yang terjadi akibat pembebanan yang diberikan. Hasil menunjukkan bahwa muatan yang dapat berada di atas deck kamar mesin sebesar 3.000 kN atau setara dengan 305,91 ton di mana skerja 210,51 MPa < 310 MPa sijin. Jika ingin menambahkan muatan lebih dari batas aman maka kekakuan struktur di daerah ini harus ditambah dengan menambah besar modulus penampang.
Downloads
References
Bölükbaşı, D. Ç., Aslanlar, S., & Konar, M. (2023). Investigation of parameters affecting longitudinal seam quality of aluminum extruded profiles. Journal of Radiation Research and Applied Sciences, 16(4), 100700. https://doi.org/10.1016/j.jrras.2023.100700
Cheng, X., Feng, B., Liu, Z., & Chang, H. (2018). Hull surface modification for ship resistance performance optimization based on Delaunay triangulation. Ocean Engineering, 153, 333–344. https://doi.org/10.1016/j.oceaneng.2018.01.109
Choi, H. J. (2015). Hull-form optimization of a container ship based on bell-shaped modification function. International Journal of Naval Architecture and Ocean Engineering, 7(3), 478–489. https://doi.org/10.1515/ijnaoe-2015-0034
Cuenca, C. A., & Sarzosa, D. F. B. (2020). Modeling ductile fracture using critical strain locus and softening law for a typical pressure vessel steel. International Journal of Pressure Vessels and Piping, 183, 104081. https://doi.org/10.1016/j.ijpvp.2020.104081
Feng, L., Li, D., Shi, H., Zhang, Q., & Wang, S. (2020). A study on the ultimate strength of ship plate with coupled corrosion and crack damage. Ocean Engineering, 200, 106950. https://doi.org/10.1016/j.oceaneng.2020.106950
Hosseinabadi, O. F., & Khedmati, M. R. (2021). A review on ultimate strength of aluminium structural elements and systems for marine applications. Ocean Engineering, 232, 109153. https://doi.org/10.1016/j.oceaneng.2021.109153
Imron, A. (2014). Kerusakan struktur akibat getaran lokal pada kapal yang jarang diperhatikan; Analisis dan solusi (Studi kasus). Jurnal Kelautan Nasional, 9(1), 11–19. https://doi.org/10.15578/jkn.v9i1.6198
Lekatompessy, D. R. (2021). The effect analysis of the stiffness changes of a Traditional Fishing Boat Foundation on Vibration Amplitude. TEKNIK, 42(1), 71–78. https://doi.org/10.14710/TEKNIK.V42I1.30978
Lekatompessy, D. R., & Zubaydi, A. (2019). The effect of joints model to the vibration characteristics of wood. IOP Conference Series: Earth and Environmental Science, 339(1), 012038. https://doi.org/10.1088/1755-1315/339/1/012038
Magoga, T., Aksu, S., & Slater, K. (2023). Implementation of a nominal stress approach for the fatigue assessment of aluminium naval ships. Procedia Structural Integrity, 45, 28–35. https://doi.org/10.1016/j.prostr.2023.05.010
Takeuchi, T., Osawa, N., Tatsumi, A., Inoue, T., Hirakawa, S., Seki, N., Yoshida, T., Miratsu, R., & Ikeda, S. (2023). Fatigue assessment of ship structures based on equivalent wave probability (EWP) concept (1st report): Proposal of EWP concept and its verification by 8600TEU container ship’s onboard hull monitoring. Marine Structures, 91, 103476. https://doi.org/10.1016/j.marstruc.2023.103476
Tamimi, M. F., Soliman, M., & Khandel, O. (2023). A comprehensive approach for quantifying the reliability of ship hulls under propagating fatigue cracks. Ocean Engineering, 279, 114488. https://doi.org/10.1016/j.oceaneng.2023.114488
Wang, H., Jiang, W., He, Z., & Peng, W. (2021). Analysis on surface mobility of an infinite beam-stiffened structure. Applied Acoustics, 172, 107590. https://doi.org/10.1016/j.apacoust.2020.107590
Woloszyk, K., Goerlandt, F., & Montewka, J. (2024). A methodology for ultimate strength assessment of ship hull girder accounting for enhanced corrosion degradation modelling. Marine Structures, 93, 103530. https://doi.org/10.1016/j.marstruc.2023.103530
Copyright (c) 2023 Debby Raynold Lekatompessy
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the ARIKA Jurnal agrees to the following terms:
- The author retains the copyright and grants ARIKA journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- The author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- The author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).