Analysis of Land Surface Temperature in Buru Regency Using MODIS Satellite Imagery Data Based on Cloud Computing with Google Earth Engine
Analisis Suhu Permukaan Daratan di Kabupaten Buru Menggunakan Data Citra Satelit MODIS Berbasis Cloud Computing Google Earth Engine
Abstract
Monitoring land surface temperature in Buru Regency using geospatial technology based on Google Earth Engine cloud computing can help in understanding climate and weather changes on a global scale, as well as provide essential information for scientists, governments, and non-governmental organizations in making decisions related to climate change mitigation and disaster management. This study aims to analyze land surface temperature in Buru Regency using MODIS satellite imagery data based on Google Earth Engine cloud computing. The research utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Land Surface Temperature and Emissivity 8-Day Global data, accessed and analyzed through Google Earth Engine. The lowest land surface temperature in Buru Regency is 12.7438°C, and the highest is 31.9582°C. The area with very high land surface temperature (LST) covers 96,604.46 hectares, or 19.90%; high LST covers 139,606.47 hectares or 28.76%; medium LST covers 140,853.38 hectares, or 29.02%; low LST covers 79,896.56 hectares, or 16.46%, and very low LST covers 28,458.57 hectares or 5.86%. The analysis of land surface temperature in Buru Regency can provide crucial information for the local government in policy-making and planning for sustainable regional development.
Downloads
References
Caballero, C. B., Ruhoff, A., & Biggs, T. (2022). Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Science of The Total Environment, 808, 152134. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152134
Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2019). Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environmental Monitoring and Assessment, 191(9), 551. https://doi.org/10.1007/s10661-019-7645-3
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
How Jin Aik, D., Ismail, M. H., Muharam, F. M., & Alias, M. A. (2021). Evaluating the impacts of land use/land cover changes across topography against land surface temperature in Cameron Highlands. PLOS ONE, 16(5), e0252111. https://doi.org/10.1371/journal.pone.0252111
Kanga, S., Meraj, G., Johnson, B. A., Singh, S. K., PV, M. N., Farooq, M., Kumar, P., Marazi, A., & Sahu, N. (2022). Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174241
Khan, R., Li, H., Basir, M., Chen, Y. L., Sajjad, M. M., Haq, I. U., Ullah, B., Arif, M., & Hassan, W. (2022). Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan. Environmental Monitoring and Assessment, 194(6), 409. https://doi.org/10.1007/s10661-022-10072-1
Moazzam, M. F. U., Doh, Y. H., & Lee, B. G. (2022). Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Building and Environment, 222, 109368. https://doi.org/10.1016/j.buildenv.2022.109368
Onisimo Muntaga, L. K. (2019). Google Earth Engine Applications. Remotesensing, 11–14. https://doi.org/10.3390/rs11050591
Rakuasa, H. (2022). ANALISIS SPASIAL TEMPORAL SUHU PERMUKAAN DARATAN/ LAND SURFACE TEMPERATURE (LST) KOTA AMBON BERBASIS CLOUD COMPUTING: GOOGLE EARTH ENGINE. Jurnal Ilmiah Informatika Komputer, 27(3), 194–205. https://doi.org/10.35760/ik.2022.v27i3.7101
Sapena, M., & Ruiz, L. Á. (2019). Computers , Environment and Urban Systems Analysis of land use / land cover spatio-temporal metrics and population dynamics for urban growth characterization. Computers, Environment and Urban Systems, 73(August 2018), 27–39. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.08.001
Sasky, P., Sobirin, S., & Wibowo, A. (2017). Pengaruh Perubahan Penggunaan Tanah Terhadap Suhu Permukaan Daratan Metropolitan Bandung Raya Tahun 2000–2016. Prosiding Industrial Research Workshop and National Seminar, 354–361. https://doi.org/https://doi.org/10.35313/irwns.v8i3.767
Wang, M., Zhang, Z., Hu, T., Wang, G., He, G., Zhang, Z., Li, H., Wu, Z., & Liu, X. (2020). An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4689–4701. https://doi.org/10.1109/JSTARS.2020.3014586
Wang, R., Cai, M., Ren, C., Bechtel, B., Xu, Y., & Ng, E. (2019). Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Climate, 28, 100455. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100455
Zhengming Wan. (2020). MOD11A2 v061 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid. USGS Website. https://lpdaac.usgs.gov/products/mod11a2v061/
Zulkarnain, R. C. (2016). Pengaruh Perubahan Tutupan Lahan Terhadap Perubahan Suhu Permukaan di Kota Surabaya. Skripsi Institut Teknologi Sepuluh Nopember, 1–306.
Copyright (c) 2023 Heinrich Rakuasa
This work is licensed under a Creative Commons Attribution 4.0 International License.