Phytoremediation of Lead (Pb) Particulate as a Nature-Based Solution For a Healthier Environment

Keywords: Air pollution,, Environmental quality, lead particulate,, phytoremediation

Abstract

Lead (Pb) particulates are a serious environmental issue due to their impact on health and ecosystems. These pollutants stem from emissions of vehicles, industries, and mining. This study aims to explore the potential of plants as phytoremediators of Pb used a literature review with data triangulation from scientific journals and institutional reports. Content analysis, tabulation, and exploratory descriptive analysis were conducted. Lead, with an atomic number of 82 and an atomic weight of 207.20, is a hazardous metal that can cause kidney damage, hypertension, anemia, nerve damage, reduced fertility, miscarriages, and lower IQ. Pb particulates can adhere or fall on leaf surfaces and are absorbed through stomata. This process occurs because the size of Pb particulates (0.2-4 µm) allows them to be absorbed through stomatal openings (2-10 µm) when they open to take in CO2, thus allowing Pb to enter and accumulate in plant tissues. Through this physiological mechanism, plants can be used as effective solutions for absorbing Pb. Some plants with high effectiveness include Polyaltia longifolia, Swietenia macrophylla, and Bougainvillea spectabilis. Planting these species in industrial zones and roads can improve air quality and provide ecosystem benefits, such as clean air, habitat space, thermal comfort, and aesthetic value.

Downloads

Download data is not yet available.

References

Alamsyah, M. A. B., & Rachmadiarti, F. (2021). Potency of Ruellia simplex C. Wright, Plumeria pudica, and Tabernaemontana sp. var. variegate as an Lead (Pb) Absorbent in Air. LenteraBio : Berkala Ilmiah Biologi, 9(2), 122–128. https://doi.org/10.26740/lenterabio.v9n2.p122-128

Alqattan, Z. A., Trahan, A., Chukwuonye, G. N., Jones, M., & Ramírez-Andreotta, M. D. (2025). Lead source apportionment and climatic impacts in rural environmental justice mining communities. Environmental Research, 271(October 2024), 1–17. https://doi.org/10.1016/j.envres.2025.121130

Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology, and Landscapes, 2(1), 51–60. https://doi.org/10.1080/24749508.2018.1452464

Arif, F., Wibowo, C., Syarifuddin, A., & Pratama, D. (2024). Analysis of Lead (Pb) Content in Pterocarpus indicus and Mimusops elengi Leaves along the Main Roads of Banyuwangi Regency. Jurnal Ilmu Lingkungan, 22(3), 687–692. https://doi.org/10.14710/jil.22.3.687-692

Bazzano, A., Cappelletti, D., Udisti, R., & Grotti, M. (2016). Long-range transport of atmospheric lead reaching Ny-Ålesund: Inter-annual and seasonal variations of potential source areas. Atmospheric Environment, 139, 11–19. https://doi.org/10.1016/j.atmosenv.2016.05.026

Briseño-Bugarín, J., Araujo-Padilla, X., Escot-Espinoza, V. M., Cardoso-Ortiz, J., Flores de la Torre, J. A., & López-Luna, A. (2024). Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico. Environments - MDPI, 11(3), 1–16. https://doi.org/10.3390/environments11030043

Clay, K. B., Hollingsworth, A., & Severnini, E. (2023). The Impact of Lead Exposure on Fertility, Infant Mortality, and Infant Birth Outcomes. SSRN Electronic Journal, 16236. https://doi.org/10.2139/ssrn.4498097

Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. G. S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7(July), 1–8. https://doi.org/10.1016/j.hazadv.2022.100094

Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3(July), 1–8. https://doi.org/10.1016/j.hazl.2022.100064

Directorate general of Oil and Gas, Ministry of Energy and Mineral Resources. (2020). Fuel, Biofule, and LPG Product Specifications. In Spesifikasi Produk BBM, BBN & LPG.

Erwinda, A., Suharto, E., & Anwar, G. (2022). Correlation between Lead Levels, Chlorophyll Content, and Stomatal Density in Mahogany (Swietenia macrophylla King) Leaves in the Green Belt of Bengkulu City. Journal of Global Forest and Environmental Science, 2(1), 89–97. https://ejournal.unib.ac.id/jhutanlingkungan/article/view/20348

Fawkes, L., & Sansom, G. (2021). Preliminary study of lead-contaminated drinking water in public parks an assessment of equity and exposure risks in two texas communities. International Journal of Environmental Research and Public Health, 18(12), 1–8. https://doi.org/10.3390/ijerph18126443

Fida, R., Mahanani, A., Kandilia Sari, S., Yulia, N., & Aisyah, N. F. (2022). Analysis of Lead (Pb) in Leaf of Tabebuia aurea from Polluted Air. MATEC Web of Conferences, 372, 07001. https://doi.org/10.1051/matecconf/202237207001

Fine, R., Mohammad, N. A., & Budi, S. (2011). The Impact of Airborne Lead (Pb) Content on the Intelligence of Elementary School Children. MALIH PEDDAS: Majalah Ilmiah Pendidikan Dasar, 1(2), 97–107. https://doi.org/https://doi.org/10.26877/malihpeddas.v1i2.305

Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

Government Regulation the Republic of the Indonesia Number 41 Year 1999 Concerning Air Pollution Control.

Gunawan, L., & Masloman, N. (2014). Correlation of blood lead level and intelligence quotient in children. Paediatrica Indonesiana, 54(3), 127. https://doi.org/10.14238/pi54.3.2014.127-31

Gupta, M., Dwivedi, V., Kumar, S., Patel, A., Niazi, P., & Yadav, V. K. (2024). Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signaling and Behavior, 19(1), 1–22. https://doi.org/10.1080/15592324.2024.2365576.

Ha, N., Seo, E., Kim, S., & Lee, S. J. (2021). Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-91073-x

Hao, J., Wu, Y., & Wang, S. (2000). Technologies for Air Pollution Control. Encyclopedia of Life Support Systems, II, 1–9.

Hardiyanti, Y., Fahruddin, F., & Paulina, T. (2020). Accumulation of Heavy Metal Lead (Pb) and Effect of Stomates Number on Green Champa Leaves (Polyaltia Longifolia) in Industrial Area of Makassar City. International Journal of Applied Biology, 4(2), 1–8.

Huang, H., Guan, H., Tian, Z. Q., Chen, M. M., Tian, K. K., Zhao, F. J., & Wang, P. (2024). Exposure sources, intake pathways and accumulation of lead in human blood. Soil Security, 15(May), 100150. https://doi.org/10.1016/j.soisec.2024.100150.

Khan, M. A. Q., & Bederka, J. P. (1974). Survival in Toxic Environments. New York Academic Press.

Kumar, A. (2020). Chemistry of Lead: Introduction. https://bncollegebgp.ac.in/wp-content/uploads/2020/06/Chemistry-of-Lead.pdf.

Leo, S., Hakim, M. F., Pambudi, P. A., & Pramudianto, A. (2024). The Role of an Ecosystem Restoration Company in Reducing Carbon Emission in the Perspective of the Carbon Pricing Scheme in Indonesia. AIP Conference Proceedings, 3001(1), 1–7. https://doi.org/10.1063/5.0192586.

Lestari, M. W., & Rosyidah, A. (2022). Potential of Two Vegetable Plants in Reducing Lead Contamination in Soil. Journal of Ecological Engineering, 23(8), 320–326. https://doi.org/10.12911/22998993/151092.

Li, Z., Jiang, L., Yu, H., & Wang, J. (2025). The hidden risk in high-temperature urban environments: assessment of metal elements and human health risks of particulate matter at street. Journal of Hazardous Materials, 488(February), 1–15. https://doi.org/10.1016/j.jhazmat.2025.137475.

Manik, S. T., Prihanta, A., & Purwanti, E. (2015). Analysis of Lead (Pb) Content in Tamarindus indica and Samanea saman Leaves in Garum District, Blitar Regency. Seminar Nasional XII Pendidikan Biologi FKIP UNS 2015, 816–821.

Marinello, S., Lolli, F., Coruzzolo, A. M., & Gamberini, R. (2023). Exposure to Air Pollution in Transport Microenvironments. Sustainability (Switzerland), 15(15), 1–32. https://doi.org/10.3390/su151511958.

Nurhikmah, A., Syamsidar, H. S., & Ramadani, K. (2015). Biosorpsi Bogenvil (Bougainvillea Spectabilis Wild) terhadap Emisi Timbal (Pb) pada Kendaraan Bermotor. Al-Kimia, 3(2), 42–51.

Pambudi, P.A., Utomo, S.W., and Handoko, R.S. (2025). Coal Mining Reclamation: Lesson Learned From Tropical and Subtropical Countries. Journal of Environmental Science and Sustainable Development, 8(1).

Available at: https://doi.org/10.7454/jessd.v8i1.1299.

Pambudi, P. A., & Panjaitan, D. F. (2023). The Effects of Covid-19 Pandemic on Environmental Conditions in the Special Capital Region of Jakarta, Indonesia. EnviroScienteae, 19(1), 143–157.

Pauwelussen, J. P. (2015). The Vehicle–Driver Interface. In Essentials of Vehicle Dynamics (pp. 195–238). https://doi.org/10.1016/b978-0-08-100036-6.00006-6.

Poudel, K., Ikeda, A., Fukunaga, H., Brune Drisse, M. N., Onyon, L. J., Gorman, J., Laborde, A., & Kishi, R. (2024). How does formal and informal industry contribute to lead exposure? A narrative review from Vietnam, Uruguay, and Malaysia. Reviews on Environmental Health, 39(2), 371–388. https://doi.org/10.1515/reveh-2022-0224.

Primawati, R., & Daningsih, E. (2022). Distribution and Size of Stomata in Six Dicotyledonous Plant Species Jurnal Ilmu Pertanian Indonesia, 27(1), 27–33. https://doi.org/10.18343/jipi.27.1.27.

Qin, J., Jiang, X., Qin, J., Zhao, H., Dai, M., Liu, H., & Chen, X. (2023). Effects of Lead Pollution on Photosynthetic Characteristics and Chlorophyll Fluorescence Parameters of Different Populations of Miscanthus floridulus. Processes, 11(5), 1–17. https://doi.org/10.3390/pr11051562.

Rahat, M. M. R., Rumman, R., Ferdousi, F. K., Zhao, S., Siddique, M. A. B., Zhang, G., Liu, G., & Habib, A. (2025). Heavy metals in atmospheric fine particulate matter (PM2.5) in Dhaka, Bangladesh: Source apportionment and associated health risks. Environmental Research, 271(December 2024), 1–13. https://doi.org/10.1016/j.envres.2025.121071.

Raj, K., & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5(February), 79–85. https://doi.org/10.1016/j.enceco.2023.02.001.

Ravindra, K., & Mor, S. (2022). Phytoremediation potential of indoor plants in reducing air pollutants. Frontiers in Sustainable Cities, 4. https://doi.org/10.3389/frsc.2022.1039710.

Rois, I., & Muryani, S. (2023). Bioremediation Potential of Croton (Codiaeum variegatum) Against Lead (Pb) Pollution on Roadways: A Field Study. Sanitasi: Jurnal Kesehatan Lingkungan, 16(2), 61–68. https://doi.org/10.29238/sanitasi.v16i2.2471.

Sassykova, L. R., Aubakirov, Y. A., Sendilvelan, S., Tashmukhambetova, Z. K., Faizullaeva, M. F., Bhaskar, K., Batyrbayeva, A. A., Ryskaliyeva, R. G., Tyussyupova, B. B., Zhakupova, A. A., & Sarybayev, M. A. (2019). The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization. Oriental Journal of Chemistry, 35(1), 110–127. https://doi.org/10.13005/ojc/350112.

Steinnes, E. (2013). Chapter 14. Lead. In The Heavy Metals (1st ed., Issue 14, pp. 395–409). Springer Science. https://doi.org/10.1007/978-94-007-4470-7.

Su, H., & Diao, M. (2025). Assessing the causal effect of air pollution on electric vehicle adoption using real world data: Evidence from 270 Chinese cities. Journal of Transport Geography, 124(December 2023), 1–11. https://doi.org/10.1016/j.jtrangeo.2025.104120.

Surani, R. (2002). Pollution and Toxicology of Heavy Metals. Jakarta: Rineka Cipta.

Thao, L. T., Vinh, P., & Anh, T. (2023). Air Pollution Control for the Sustainable Development Goals within Vietnam’s Perspective. Administrative and Environmental Law Review, 4(1), 43–58. https://doi.org/10.25041/aelr.v4i1.2860.

Ur Rahman, S., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., Naveed, S., Ansari, M. J., Saeed, M., Ahmad, I., & Shehzad, M. (2024). Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon, 10(6), e27724. https://doi.org/10.1016/j.heliyon.2024.e27724.

Utami, Y. T. (2021). Analysis of Lead (Pb) in Pertalite and Pertamax Fuels at Gas Stations in Makassar Using Atomic Absorption Spectrophotometry (AAS). Universitas Hasanuddin. https://repository.unhas.ac.id/id/eprint/13221/2/H031171323_skripsi_04-02-2022%201-2.pdf.

Utomo, S. W., Pambudi, P. A., Pramudianto, A., & Sudaryanto. (2021). The carbon dioxide (CO2) sequestration potential of conservation plant Aquilaria malaccensis. IOP Conference Series: Earth and Environmental Science, 724(1). https://doi.org/10.1088/1755-1315/724/1/012063.

Wang, F., Li, M., & Liu, Y. (2019). Characteristics of lead smelting fume and its potential treatment technology. IOP Conference Series: Earth and Environmental Science, 384(1). https://doi.org/10.1088/1755-1315/384/1/012108.

Wati, C. C., Prijono, S., & Kusuma, Z. (2015). The effect ofmotor vehicle emission towards lead (Pb) content of rice field soil with different clay content. Journal of Degraded and Mining Lands Management, 3(1), 453–458. https://doi.org/10.15243/jdmlm.2015.031.453.

World Health Organization. (2021). WHO guidance to reduce illness due to lead exposure. WHO. https://www.who.int/news/item/27-10-2021-who-guidance-to-reduce-illness-due-to-lead-exposure

Wu, J. Z., Ge, D. D., Zhou, L. F., Hou, L. Y., Zhou, Y., & Li, Q. Y. (2018). Effects of particulate matter on allergic respiratory diseases. Chronic Diseases and Translational Medicine, 4(2), 95–102. https://doi.org/10.1016/j.cdtm.2018.04.001.

Wu, Q., Zhu, Y., Huang, K., & Liu, J. (2025). Research on influencing factors and improvement methods for air pollution in rural houses of severe cold region of China. Journal of Building Engineering, 99(73), 1–17. https://doi.org/10.1016/j.jobe.2024.111491.

Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19.

Zhang, Y., Yang, C., Liu, S., Xie, Z., Chang, H., & Wu, T. (2024). Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. Plant Cell Reports, 43(4), 1–18. https://doi.org/10.1007/s00299-024-03189-9.

Zhao, S., Ye, X., & Zheng, J. (2011). Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. African Journal of Biotechnology, 10(50), 10116–10124. https://doi.org/10.5897/AJB11.627.

Published
2025-08-27
How to Cite
Pambudi, P. A., & Handoko, R. S. (2025). Phytoremediation of Lead (Pb) Particulate as a Nature-Based Solution For a Healthier Environment. RUMPHIUS Pattimura Biological Journal, 7(2), 108-118. https://doi.org/10.30598/rumphiusv7i2p108-118