In Vitro and In Silico Evaluation of Antioxidant Activity of Muscle and Endoskeleton from Sepia officinalis
Abstract
Sepia officinalis, commonly known as cuttlefish, is one of the diverse marine organisms consumed for its high protein content. Amino acids, as the building blocks of proteins, can function as antioxidant compounds. The high amino acid content in cuttlefish makes it a potential natural source of antioxidants. However, the use of cuttlefish in medicine, particularly as an antioxidant source, remains limited in Indonesia. At present, cuttlefish is mainly utilized as a dietary protein source. The objective of this study was to evaluate the antioxidant activity of muscle and endoskeleton extracts from S. officinalis using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay in vitro. In addition, an in silico approach was employed to analyze the interaction of these extracts with myeloperoxidase, an oxidant-producing enzyme. The results demonstrated that both muscle and endoskeleton extracts were able to scavenge free radicals, showing DPPH inhibition ranging from 46.19% to 48.42%. The highest inhibition was observed at a concentration of 200 ppm for both extracts. Furthermore, in silico analysis revealed that tyrosine and phenylalanine were the key amino acids with antioxidant potential, as they inhibited myeloperoxidase activity and could reduce oxidant production by the enzyme. These findings highlight the potential of S. officinalis as a natural antioxidant source and support its future development as a functional food ingredient.
Downloads
References
Abdel-Malek, A. R., Moustafa, A. Y., & Salem, S. H. (2024). Antimicrobial and cytotoxic activities of flavonoids and phenolics extracted from Sepia pharaonis ink (Mollusca: Cephalopoda). BMC Biotechnol. 24, 54. https://doi.org/10.1186/s12896-024-00880-3
Alfarabi, M., Siagian, F. E., Cing, J. M., Suryowati, T., Turhadi, Suyono, M. S., Febriyanti, M. S., & Naibaho, F. B. (2022a). Bioactivity and metabolite profile of papaya (Carica papaya) seed extract. Biodiversity 23(9), 4589-4600. https://doi.org/10.13057/biodiv/d230926
Alfarabi, M., Turhadi, Suryowati, T., Imaneli, N. A., & Sihombing, P. O. (2022b). Antioxidant activity and metabolite profiles of leaves and stem extracts of Vitex negundo. Biodiversity 23(5), 2663-2667. https://doi.org/10.13057/biodiv/d230550
Bachtler, S., & Bart, H. J. (2021). Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food Bioproducts Process. 125, 1-13. https://doi.org/10.1016/j.fbp.2020.10.009
Balti, R., Bougatef, A., Ali, N. E. H., Ktari, N., Jellouli, K., Nedjar-Arroume, N., Dhulster, P., & Nasri, M. (2011). Comparative study on biochemical properties and antioxidative activity of cuttlefish (Sepia officinalis) protein hydrolysates produced by alcalase and Bacillus licheniformis NH1 proteases. J. Amino Acids 2011, 107179. https://doi.org/10.4061/2011/107179
Blair-Johnson, M., Fiedler, T., & Fenna, R. (2001). Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution. Biochemistry 40, 13990-13997. https://doi.org/10.1021/bi0111808
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
Bogunia, M., & Makowski, M. (2020). Influence of ionic strength in hydrophobic interactions in water: dependence on solute size and shape. J. Phys. Chem. B. 124, 10326-10336. https://doi.org/10.1021/acs.jpcb.0c06399
Bulusu, G., & Desiraju, G. R. (2019). Strong and weak hydrogen bonds in protein-ligand recognition. J. Indian Inst. Sci. 100, 31-41. https://doi.org/10.1007/s41745-019-00141-9
Derby, C. D. (2014). Cephalopod ink: production, chemistry, functions and applications. Mar. Drugs. 12, 2700-2730. https://doi.org/10.3390/md12052700
Dong, W., Chen, Q., Wei, C., Hu, R., Long, Y., Zong, Y., & Chu, Z. (2021). Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason. Sonochem. 74, 105578. https://doi.org/10.1016/j.ultsonch.2021.105578
Dos Santos, M. B., Marques, B. C., Ayusso, G. M., Garcia, M. A. R., Paracatu, L. C., & Pauli, I., et al. (2021). Chalcones and their B-aryl analogues as myeloperoxidase inhibitors: in silico, in vitro and ex vivo investigations. Bioorg. Chem. 110, 104773. https://doi.org/10.1016/j.bioorg.2021.104773
Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48, 430–441. https://doi.org/10.1080/10408390701425615
Florek, M., Fornal, E., Gómez-Romero, P., Zieba, E., Paszkowicz, W., Lekki, J., Nowak, J., & Kuczumow, A. (2009). Complementary microstructural and chemical analyzes of Sepia officinalis endoskeleton. Mater. Sci. Eng. C. 29, 1220–1226. https://doi.org/10.1016/j.msec.2008.09.040
Frangie, C., & Daher, J. (2022). Role of myeloperoxidase in inflammation and atherosclerosis. Biomed Rep. 16, 53. https://doi.org/10.3892/br.2022.1536
Halliwell, B. (2020). Reflections of an aging free radical. Free Radic Biol Med. 161, 234-245. https://doi.org/10.1016/j.freeradbiomed.2020.10.010
Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 30, 440-451. https://doi.org/10.1016/j.tcb.2020.03.002
Jakubec, D., Skoda, P., Krivak, R., Novotny, M., & Hoksza, D. (2022). PrankWeb 3: accelerated ligand-binding site predictions for experimental and modeled protein structures. Nucleic Acids Res. 50, W593–W597. https://doi.org/10.1093/nar/gkac389
Jridi, M., Nasri, R., Marzougui, Z., Abdelhedi, O., Hamdi, M., & Nasri, M. (2019). Characterization and assessment of antioxidant and antibacterial activities of sulfated polysaccharides extracted from cuttlefish skin and muscle. Int. J. Biol Macromolecules 123, 1221–1228. https://doi.org/
1016/j.ijbiomac.2018.11.170
Kim, J. H., Jang, H. J., Cho, W. Y., Yeon, S.J., & Lee, C.H. (2020). In vitro antioxidant actions of sulfur-containing amino acids. Arabian J. Chem. 13, 1678-1684. https://doi.org/10.1016/j.arabjc.2017.12.036
Kim, A. H., Jang, J. E., Han, J. (2022). Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed. Pharmacotherapy 145, 112463. https://doi.org/10.1016/j.biopha.2021.112463
Kudatarkar, N., Jalalpure, S., Patil, V. S., & Kurangi, B. (2021). Systems biology and chemoinformatics approaches to decode the molecular mechanisms of chrysin against colon cancer. J Appl Pharm Sci. 11, 57-65. https://dx.doi.org/10.7324/JAPS.2021.110907
Lawal-Are, A. O., Moruf, O. R., Junaid, D.A., & Oke, M. O. (2018). Chemical bio-compounds and functional properties of raw and processed cuttlefish, Sepia officinalis (Mollusca: Cephalopoda). Food Environ. Safety J. 17, 332-340.
Lazarevic-Pasti, T., Leskovac, A., & Vasic, V. (2015). Myeloperoxidase inhibitors as potential drugs. Curr. Drug Metab. 16, 168 – 190. http://dx.doi.org/10.2174/138920021603150812120640
Matsui, R., Honda, R., Kanome, M., Hagiwara, A., Matsudah, Y., Togitani, T., Ikemoto, N., & Terashima, M. (2018). Designing antioxidant peptides is based on the antioxidant properties of the amino acid side-chains. Food Chem. 245, 750-755. https://doi.org/10.1016/j.foodchem.2017.11.119
Muchlisin, Z. A., Muhadjier, A., Zulkarnaini, Purnawan S., Cheng, S. H., & Setiawan, I. (2014). The relationship long weight and factors condition three species squid results catch fishermen in the waters Aceh Sea part north. Bionatura-Jurnal Biol. Phys. Sci. 16, 72-77.
Nikawanti, G., & Aca, R. (2021). Ecoliteracy: building resilience food from riches Indonesian maritime. Journal Maritime: Indonesian Journal of Maritime. 2, 113-122. https://doi.org/10.17509/ijom.v2i2.37603
Okutani, K., & Morikawa, N. (1978). Gel-filtration and sugar constituent of the polysaccharide extracted from the internal shell of squid. Bull. Japan. Soc. Sci. Fish 44, 369-372. https://doi.org/10.2331/suisan.44.369
Pollastry, M. P. (2010). Overview on the rule of five. Curr. Protocol Pharmacol. 49, 9.12.1. https://doi.org/10.1002/0471141755.ph0912s49
Rajan, R., Karthikeyan, S., & Desikan, R. (2024). Synthesis, structural elucidation, in silico and in vitro studies of new class of methylenedioxyphenyl-based amide derivatives as potential myeloperoxidase inhibitors for cardiovascular protection. ACS Omega 9, 7850-7868. https://doi.org/10.1021/acsomega.3c07555
Sadek, S. A. (2022). Sepia officinalis ink mitigates gastric ulcer via modulation of antioxidant/anti‑inflammatory pathways. Beni-Suef Univ. J. Basic Appl. Sci. 11, 63. https://doi.org/10.1186/s43088-022-00242-y
Siahpoosh, A., & Alikhani, K. (2016). Evaluation of antioxidant capacity and free radical scavenging activities of pepsin extract of sotong (Sepia pharaonis) from Persian Gulf. Indian J. Tradit. Knowl. 15, 604 -610.
Singh, A. K. (2016). Chapter 8. Nanoparticle ecotoxicology. in: Engineered Nanoparticles, Academic Press, San Diego, USA. pp. 343-350. https://doi.org/10.1016/B978-0-12-801406-6.00008-X
Storey, K.B., & Storey, J.M. (1979). Octopine metabolism in the cuttlefish, Sepia officinalis: octopine production by muscle and its role as an aerobic substrate for non-muscular tissues. J Comp Physiol. 131, 311-319. https://doi.org/10.1007/BF00688806
Sykes, A.V., Oliviera, A.R., Domingues, P.M., Cardoso, C. M., Andrade, J. P., & Nunes, M. L. (2009). Assessment of European cuttlefish (Sepia officinalis, L.) nutritional value and freshness under ice storage using a developed Quality Index Method (QIM) and biochemical methods. LWT - Food Sci.Technol. 42(1), 424-432. https://doi.org/10.1016/j.lwt.2008.05.010
Wang, X. Q., Wang, W., Peng, M., & Zhang, X. Z. (2021). Free radicals for cancer theranostics. Biomaterials 266, 120474. https://doi.org/10.1016/j.biomaterials.2020.120474
Wu, J. (2020). Tackle the free radicals damage in COVID-19. Nitric Oxide 102, 39-41. https://doi.org/10.1016/j.niox.2020.06.002
Xie, J., Li, H., Che, H., Dong, X., Yang, X., & Xie, W. (2021). Extraction, physicochemical characterization, and bioactive properties of ink melanin from cuttlefish (Sepia esculenta). Int. J. Food Sci. Technol. 56, 3627-3640. https://doi.org/10.1111/ijfs.14992
Copyright (c) 2025 Katherine Daniella, Rafly Alif Ismail, Fahri Fahrudin, Jap Mai Cing, Muhammad Alfarabi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who propose a manuscript and have it approved for publication know that the manuscript will be registered and become part of the RPBJ. Authors and readers understand that this journal is open and all its contents can be accessed freely, provided that RPBJ is still listed as the source of information. The hope is that this journal can become a vehicle for exchange and scientific knowledge for society and the scientific community, especially in the field of Biology and other branches of science.