Karakteristik Smart Biodegradable Film Packaging Berbahan Alginat, Sorbitol, Bunga Telang, dan Tepung Cangkang Telur

Characteristics of Smart Biodegradable Film Packaging Based on Alginate, Sorbitol, Butterfly Pea Flower, and Eggshell Powder

  • Livia D Salfira Program Studi Teknologi Pangan, Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42-44, Surabaya 60265 Indonesia
  • Erni Setijawaty Program Studi Teknologi Pangan, Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42-44, Surabaya 60265 Indonesia
  • Adrianus R Utomo Program Studi Teknologi Pangan, Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42-44, Surabaya 60265 Indonesia
  • Ignasius R A P Jati Program Studi Teknologi Pangan, Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42-44, Surabaya 60265 Indonesia
Keywords: Butterfly pea flowers extract, chicken eggshell powder, smart biodegradable film packaging

Abstract

Smart biodegradable film packaging represents a technological advancement in environmentally friendly food preservation. This study examined the effects of the concentration of butterfly pea (Clitoria ternatea) flower extract and chicken eggshell powder, as well as their interaction, on the functional properties of biodegradable film for food packaging. Butterfly pea flowers were dried and extracted in water at ratios of 1:250 and 1:125 (m/v), while chicken eggshell powder was incorporated at concentrations of 0.15% and 0.30% (w/v). A randomized block design with two factors was employed, i.e., butterfly pea flower extract and eggshell powder. Data were analyzed using analysis of variance (α = 0,05) followed by Duncan's Multiple Range Test (α = 0,05). The results showed that the butterfly pea flower extract significantly affected the film’s bioactive properties, with total phenolic content ranging from 75.13-269.49 mg GAE/100 g, total anthocyanin content from 0.16-2.72 CGE/100 g, and antioxidant activity from 4.54-60.45%. A significant interaction between butterfly pea flower extract and chicken eggshell powder influenced the water vapor transmission rate, tensile strength, and percent elongation of the films. Furthermore, changes in color of both the packaging film and steamed chicken meat samples, as well as in the aroma and pH of steamed chicken meat samples, were observed during storage.

Downloads

Download data is not yet available.

References

Al Isyrofie, A.I.F., Kashif, M., Aji, A.K., Aidatuzzahro, N., Rahmatillah, A., Winarno, Susilo, Y., Syahrom, A., & Astuti, S.D. (2022). Odor clustering using a gas sensor array system of chicken meat based on temperature variations and storage time. Sensing and Bio-Sensing Research, 37, 1-11. https://doi.org/10.1016/j.sbsr.2022.100508.

Aprilliani, F., Putri Ayuningtyas, L., & Adila Lestari, H. (2022). Bunga telang (Clitoria ternatea L.) sebagai indikator pH dalam sistem kemasan pintar. Agroteknika, 5, 87–97. https://doi.org/10.55043/agroteknika.v5i2.133

Aydin, G., & Zorlu, E.B. (2022). Characterisation and antibacterial properties of novel biodegradable films based on alginate and roselle (Hibiscus sabdariffa L.) extract. Waste and Biomass Valorization, 13, 2991-3002.

Aydogdu Emir, A., Yildiz, E., Oz, E., Amarowicz, R., Proestos, C., Khan, M. R., Elobeid, T., & Oz, F. (2023). Development of simultaneous antioxidant and visual pH-sensing films based on guar gum loaded with Aronia melanocarpa extract. International Journal of Food Science and Technology, 58, 4376-4385. https://doi.org/10.1111/ijfs.16542.

Cengristitama, C., Herdiansyah, H., & Sari, M.W. (2023). Pengaruh penambahan kitosan dan plasticizer sorbitol pada proses pembuatan plastik biodegradable berbahan dasar pati kulit pisang tanduk. Jurnal TEDC, 17, 134-140.

de Morais, J. S., Sant’Ana, A.S., Dantas, A.M., Silva, B.S., Lima, M.S., Borges, G.C., & Magnani, M. (2020). Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Research International, 131, 1-15. 109046. https://doi.org/10.1016/j.foodres.2020.109046.

Domínguez, R., Barba, F.J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., Santos, E. M., & Lorenzo, J.M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93–101. https://doi.org/10.1016/j.foodres.2018.06.073.

Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9, 1-42. https://doi.org/10.3390/foods9111628

Ekrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M., & Emam-Djomeh, Z. (2022). pH-responsive color indicator of saffron (Crocus sativus L.) anthocyanin-activated salep mucilage edible film for real-time monitoring of fish fillet freshness. Chemistry (Switzerland), 4, 1360–1381. https://doi.org/10.3390/chemistry4040089.

Estiasih, T., Putri, W.D.R., & Waziiroh, E. (2017). Umbi-umbian dan Pengolahannya. Universitas Brawijaya Press. Indonesia. 187 p.

Estiasih, T., Putri, W.D.R., & Widyastuti, E. (2022). Komponen Minor dan Bahan Tambahan Pangan. Bumi Aksara. Indonesia. 310 p.

Fawzy, M.A., Gomaa, M., Hifney, A.F., & Abdel-Gawad, K.M. (2017). Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydrate Polymers, 157, 1903–1912. https://doi.org/10.1016/j.carbpol.2016.11.077

Febriani, M. (2011). Alginate impression vs alginate impression plus cassava starch: Analisis Gambaran Mikroskopis. Stomatognatic, 8, 67–73.

Gao, C., Pollet, E., & Avérous, L. (2017). Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydrate Polymers, 157, 669–676. https://doi.org/10.1016/j.carbpol.2016.10.037.

Hamid, Thakur, N.S., Thakur, A., & Kumar, P. (2020). Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274, 1-8. https://doi.org/10.1016/j.scienta.2020.109656 .

Hart, A., & Onyeaka, H. (2020). Eggshell and seashells biomaterials sorbent for carbon dioxide capture. In: Khan, S.A.R., & Yu, A (Eds) Carbon Capture, pp. 83-94. IntechOpen. London, United Kingdom. 108 p.

Hasriani. (2021). Pembentukan Simplisia Kayu Secang: Melalui Optimasi Proses Pengeringan. Azka Pustaka. Indonesia. 89 p.

Hematizad, I., Khanjari, A., Basti, A.A., Karabagias, I.K., Noori, N., Ghadami, F., Gholami, F., & Teimourifard, R. (2021). In vitro antibacterial activity of gelatin-nanochitosan films incorporated with Zataria multiflora Boiss essential oil and its influence on microbial, chemical, and sensorial properties of chicken breast meat during refrigerated storage. Food Packaging and Shelf Life, 30, 1-8. https://doi.org/10.1016/j.fpsl.2021.100751

Hidayati, S., Zuidar, A.S., & Ardiani, A. (2015). Aplikasi sorbitol pada produksi biodegradable film dari nata de cassava. Reaktor, 15, 196-204. https://doi.org/10.14710/reaktor.15.3.195-203.

Ismaya, F.C., Fithriyah, N.H., & Hendrawati, T.Y. (2021). Pembuatan dan karakterisasi edible film dari nata de coco dan gliserol. Jurnal Teknologi, 13, 81–88. https://dx.doi.org/10.24853/jurtek.13.1.81-88.

Jamil, N., & Pa’Ee, F. 2018. Antimicrobial activity from leaf, flower, stem, and root of Clitoria ternatea - A review. AIP Conference Proceedings, 2002, 1–6. https://doi.org/10.1063/1.5050140.

Japanese Industrial Standard. (1975). Japanese Standards Association 2 1707. J-PAL, 6(1).

Jeyaraj, E.J., Lim, Y.Y., & Choo, W.S. (2021). Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. Journal of Food Science and Technology, 58, 2054–2067. https://doi.org/10.1007/s13197-020-04745-3.

Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., & Sun, H. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CYTA - Journal of Food, 16, 1045–1054. https://doi.org/10.1080/19476337.2018.1527783

Jost, V., Kobsik, K., Schmid, M., & Noller, K. (2014). Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, 110, 309–319. https://doi.org/10.1016/j.carbpol.2014.03.096.

Kaczmarek, B. (2020). Improving sodium alginate films properties by phenolic acid addition. Materials, 13, 1–11. https://doi.org/10.3390/ma13132895.

Kasanah, N., Setyadi, Triyanto, & Tyas, I.T. (2019). Rumput Laut Indonesia Keanekaragaman Rumput Laut di Gunung Kidul Yogyakarta. UGM Press. Indonesia. 108 p.

Khairunnisa, S., Junianto, Zahidah, & Rostini, I. (2018). The effect of glycerol concentration as a plasticizer on edible films made from alginate towards its physical characteristic. World Scientific News, 112, 130–141.

Kumar, N., Pratibha, Petkoska, A.T., Khojah, E., Sami, R., & Al-Mushhin, A.A.M. (2021). Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials, 14, 1–18. https://doi.org/10.3390/ma14123305

Kuswandari, F., Sinaga, E., Nurbaiti, & Husni, A. (2022). Analysis of total phenols, total flavonoids and anthocyanin levels in blue pea flowers (Clitoria ternatea L). Journal of Tropical Biodiversity, 2, 152–159.

Leong, C.R., Daud, N.S., Tong, W.Y., Cheng, S.Y., Tan, W.N., Hamin, N.S., & Pa'ee, K.F. (2021). Gelatine film incorporated with clitoria ternatea-derived anthocyanin microcapsules, a food packaging material effective against foodborne pathogens. Food Technology and Biotechnology, 59, 422-431.

Lesti, A., Cristy, G., Agustina, S., & Nata, I.F. (2020). Synthesis and characterization of starch-based functional edible film. Konversi, 9, 92-97. https://dx.doi.org/10.20527/k.v9i2.9320

Li, Y., Hu, Z., Huo, R., & Cui, Z. (2023). Preparation of an indicator film based on pectin, sodium alginate, and xanthan gum containing blueberry anthocyanin extract and its application in blueberry freshness monitoring. Heliyon, 9, 1-18. https://doi.org/10.1016/j.heliyon.2023.e14421

Lintang, M., Tandi, O., Layuk, P., Karouw, S., & Dirpan, A. (2021). Characterization edible films of sago with glycerol as a plasticizer. IOP Conference Series: Earth and Environmental Science, 807, 022070. https://doi.org/10.1088/1755-1315/807/2/022070

Manab, A., Sawitri, M.E., Awwaly, K.U.A. (2017). Edible Film Protein Whey: Penambahan Lizozim Telur dan Aplikasi di Keju. Universitas Brawijaya Press. Indonesia. 150 p.

Marpaung, A.M. (2020). Tinjauan manfaat bunga telang (Clitoria ternatea L.) bagi kesehatan manusia. Journal of Functional Food and Nutraceutical, 1, 63–85. https://doi.org/10.33555/jffn.v1i2.30.

Marques, C., Tarek, R., Sara, M., & Brar, S.K. (2016). Sorbitol production from biomass and its global market. In: Platform Chemical Biorefinery. Elsevier. 217-227 p.

Merakchi, A., Bettayeb, S., Drouiche, N., Adour, L., & Lounici, H. (2019). Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polymer Bulletin, 76, 3535-3554.

Moghadam, M., Salami, M., Mohammadian, M., & Emam-Djomeh, Z. (2021). Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. Journal of Food Measurement and Characterization, 15, 2984–2994. https://doi.org/10.1007/s11694-021-00872-3.

Moghadam, M., Salami, M., Mohammadian, M., Khodadadi, M., & Emam-Djomeh, Z. (2020). Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104, 1-8. https://doi.org/10.1016/j.foodhyd.2020.105735.

Nata, I.F., Irawan, C., Adawiyah, M., & Ariwibowo, S. (2020). Edible film cassava starch/eggshell powder composite containing antioxidant: Preparation and characterization. IOP Conference Series: Earth and Environmental Science, 524, 012008. https://doi.org/10.1088/1755-1315/524/1/012008.

Ningsih, P., Rahmawati, S., Santi, N.M.N., Suherman, & Diah, A.W.M. (2021). Making edible film from jackfruit seed starch (Artocarpus heterophyllus) with the addition of rosella flower extract (Hibiscus sabdariffa L.) as antioxidant. International Journal of Design and Nature and Ecodynamics, 16, 691-699. https://doi.org/10.18280/ijdne.160611

Nogueira, G.F., Fakhouri, F.M., Velasco, J.I., & de Oliveira, R.A. (2019). Active edible films based on arrowroot starch with microparticles of blackberry pulp obtained by freeze-drying for food packaging. Polymers, 11, 1382-1399. https://doi.org/10.3390/polym11091382

Nur Hanani, Z.A., Aelma Husna, A.B., Nurul Syahida, S., Nor Khaizura, M.A.B., & Jamilah, B. (2018). Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packaging and Shelf Life 18: 201–211. https://doi.org/10.1016/j.fpsl.2018.11.004.

Rahmawati, S., Nuryanti, S., Sangkota, V.D.A., & Syawaliah, N. (2022). Characteristics and antioxidants of edible film from durian seeds (Durio zibethinus) with additions to rosella flower extract (Hibiscus sabdariffa L.). Materials Today: Proceedings, 65, 3109-3115.

Rawdkuen, S., Faseha, A., Benjakul, S., & Kaewprachu, P. (2020). Application of anthocyanin as a color indicator in gelatin films. Food Bioscience, 36, 100603. https://doi.org/10.1016/j.fbio.2020.100603

Santos, L.G., Alves-Silva, G.F., & Martins, V.G. (2022). Active-intelligent and biodegradable sodium alginate films loaded with Clitoria ternatea anthocyanin-rich extract to preserve and monitor food freshness. International Journal of Biological Macromolecules, 220, 866–877. https://doi.org/10.1016/j.ijbiomac.2022.08.120.

Santoso, R.A., & Atma, Y. (2020). Physical properties of edible films from pangasius catfish bone gelatin-breadfruits strach with different formulations. Indonesian Food Science and Technology Journal, 3, 42–47. https://doi.org/10.22437/ifstj.v3i2.9498.

Saputro, B.W., Dewi, E.N., & Susanto, E. (2017). Karakteristik edible film dari campuran tepung semirefined karaginan dengan penambahan tepung tapioka dan gliserol. Jurnal Pengetahuan dan Biotek Hasil Perikanan, 6, 1–6.

Seftiono, H., Pramesti, D.A., & Sumiasih, I.H. (2021). Color indicator film from butterfly pea (Clitoria ternatea L.) as smart packaging in broiler chicken meat. International Journal of Applied Biology, 5, 13–25. http://dx.doi.org/10.20956/ijab.v5i(1).13431.

Sheir, S., Ibrahim, H., Hassan, M., & Shawky, N. (2020). Incidance of psychotropic bacteria in frozen chicken meat products with special reference to Pseudomonas species. Benha Veterinary Medical Journal, 39, 165–168. https://doi.org/10.21608/bvmj.2020.37744.1238.

Sun, J., Jiang, H., Wu, H., Tong, C., Pang, J., & Wu, C. (2020). Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids, 107, 1-10. https://doi.org/10.1016/j.foodhyd.2020.105942.

Teng, Z., Jiang, X., He, F., & Bai, W. (2020). Qualitative and quantitative methods to evaluate anthocyanins. EFood, 1, 339–346. https://doi.org/10.2991/efood.k.200909.001.

Tuan Putra, T.N.M., Zainol, M.K., Mohdisa, N.S., & Mohdmaidin, N. (2021). Chemical characterization of ethanolic extract of butterfly pea flower (Clitoria ternatea). Food Research, 5, 127–134. https://doi.org/10.26656/fr.2017.5(4).744.

Vidana Gamage, G.C., Lim, Y.Y., & Choo, W.S. (2021). Anthocyanins from Clitoria ternatea flower: Biosynthesis, extraction, stability, antioxidant activity, and applications. Frontiers in Plant Science, 12, 1–17. https://doi.org/10.3389/fpls.2021.792303.

Villanueva, V., Valdés, F., Zúñiga, R.N., Villamizar-Sarmiento, M.G., Soto-Bustamante, E., Romero-Hasler, P., Riveros, A.L., Tapia, J., Lisoni, J., Oyarzun-Ampuero, F., & Valenzuela, C. (2023). Development of biodegradable and vermicompostable films based on alginate and waste eggshells. Food Hydrocolloids, 142, 1-15. https://doi.org/10.1016/j.foodhyd.2023.108813.

Vonnie, J.M., Rovina, K., Azhar, R.A., Huda, N., Erna, K.H., Felicia, W.X.L., Nur’aqilah, M. N., & Halid, N.F.A. (2022). Development and characterization of the biodegradable film derived from eggshell and cornstarch. Journal of Functional Biomaterials, 13, 1-15. https://doi.org/10.3390/jfb13020067.

Wibowo, D.P., Mariani, R., & Aulifa, D.L. (2019). Metabolit Biota Laut. Yayasan Ahmar Cendekia Indonesia. Indonesia.

Widyartini, D., Insan, A.I., Widodo, P., Susanto, A.B., & Yuniaty, A. (2021). Ekspresi Gen dalam Biosintesis Alginat Sargassum polycystum. UNSOED Press. Indonesia. 1-65 p.

Xue Mei, L., Mohammadi Nafchi, A., Ghasemipour, F., Mat Easa, A., Jafarzadeh, S., & Al-Hassan, A.A. (2020). Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. International Journal of Biological Macromolecules, 164, 4603–4612. https://doi.org/10.1016/j.ijbiomac.2020.09.082.

Yan, W., Yin, L., Zhang, M., Zhang, M. & Jia, X. (2021). Gelatinization, retrogradation, and gel properties of wheat strach-wheat bran arabinoxylan complexes. Gels, 7, 1-12.

Yong, H., Liu, J., Qin, Y., Bai, R., Zhang, X., & Liu, J. (2019). Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. International Journal of Biological Macromolecules, 137, 307–316. https://doi.org/10.1016/j.ijbiomac.2019.07.009.

Zhao, L., Liu, Y., Zhao, L., & Wang, Y. 2022. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9, 100340. https://doi.org/10.1016/j.jafr.2022.100340.

Published
2025-06-30
How to Cite
Salfira, L. D., Setijawaty, E., Utomo, A. R., & Jati, I. R. A. P. (2025). Karakteristik Smart Biodegradable Film Packaging Berbahan Alginat, Sorbitol, Bunga Telang, dan Tepung Cangkang Telur. AGRITEKNO: Jurnal Teknologi Pertanian, 14(1), 60-77. https://doi.org/10.30598/jagritekno.2025.14.1.60