Karakteristik Bioplastik Berbasis Pati Talas Belitung dengan Penguat Selulosa Kulit Nanas dan Pemlastis Sorbitol

Characteristics of Belitung Taro Starch-Based Bioplastics with Pineapple Peel Cellulose Reinforcements and Sorbitol Plasticizers

  • Yiyin Nanisha Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Mulawarman, Jl. Gunung Kelua, Samarinda 75119, Indonesia
  • Sukmiyati Agustin Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Mulawarman, Jl. Gunung Kelua, Samarinda 75119, Indonesia
Keywords: Bioplastic, Belitung taro starch, cellulose, sorbitol

Abstract

Bioplastics are plastics made from natural polymers such as starch, cellulose, and sorbitol that are biodegradable. Belitung taro, which contains amylose and amylopectin, plays a crucial role in gel formation, providing flexibility, thermal stability, and biodegradability to bioplastics. Cellulose is a strong, hard, biodegradable, and renewable material, making it a potential additive for bioplastics. Sorbitol is used as an additive to increase the flexibility of bioplastics. This study aims to investigate the effect of incorporating pineapple peel cellulose and sorbitol into Belitung taro starch-based bioplastics. The process involves extracting cellulose from pineapple peel waste, producing bioplastics using the solvent casting method, and testing the mechanical and physical properties of these bioplastics. This research was conducted in a Completely Randomized Design with two factors: the addition of cellulose (3, 4, and 5 g) and sorbitol (3, 4, and 5 g). The data were analyzed using ANOVA and Tukey's test at a 5% significance level. The results indicate that the addition of cellulose and sorbitol has a significant impact on thickness, but no significant effect on water vapor permeability, opacity, solubility, or biodegradation. The color of the bioplastic tends to be blue-gray. Tensile strength meets the BSN 2014 and JIS 2019 standards, with values ranging from 4.322 to 10.110 N/mm², while elongation meets the BSN 2014 standard (39%). The low water vapor permeability (0.0027–0.0094 g/m²/day) and high opacity (5.85–8.91 abs/mm) of the bioplastic produced indicate its potential as UV-resistant food packaging. The bioplastic solubility (0.12–0.25%) meets standards, and the degrades after 14 days of burial according to BSN 2014. Although thickness and permeability do not yet meet standards, this bioplastic is economical with low production costs.

Downloads

Download data is not yet available.

References

Afdal, K., Herawati, N., & Hasri, H. (2022). Effect of sorbitol concentrations as plasticizer on biodegradable plastic making from corncob. Chemica: Jurnal Ilmiah Kimia dan Pendidikan Kimia, 23(1), 67.

Akmala, A., & Supriyo, E. (2020). Optimasi konsentrasi selulosa pada pembuatan biodegradable foam dari selulosa dan tepung singkong. Pentana: Jurnal Penelitian Terapan, 1(1), 27–40. https://ejournal2.undip.ac.id/index.php/pentana/article/view/11597

American Society for Testing and Materials. (1995). ASTM E 96-95. Standard Test Method for Water Vapor Transmissions for Materials. ASTM International, West Conshohocken, PA, USA.

American Society for Testing and Materials. (2002). ASTM D 882-02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International, West Conshohocken, PA, USA.

Andahera, C., Sholikhah, I., Islamiati, D.A., & Pusfitasari, M.D. (2019). Pengaruh penambahan jenis dan konsentrasi plasticizer terhadap kualitas bioplastik berbasis selulosa dari tandan kosong kelapa sawit. Indonesian Journal of Pure and Applied Chemistry, 2(2), 46. https://doi.org/10.26418/indonesian.v2i2.36901

Arifin, H.R., Mauliani, Z.A., Harlina, P.W., Subroto, E., Nissa, R. C., & Nawaz, A. (2023). Characteristics of nanocomposite film based on elephant foot-yam starch (Amorphophallus paeoniifolius) with different nanocrystalline cellulose concentration. International Journal of Food Properties, 26(2), 3512–3530. https://doi.org/10.1080/10942912.2023.2286897

Badan Standardisasi Nasional. (2022). Kategori Produk, Kemasan Produk dan Wadah Bioplastik yang dapat Dikomposkan (SNI 7188-7:2022). Badan Standardisasi Nasional, Jakarta.

Chisenga, S.M., Tolesa, G.N., & Workneh, T.S. (2020). Biodegradable food packaging materials and prospects of the fourth industrial revolution for tomato fruit and product handling. International Journal of Food Science, 8879101. https://doi.org/10.1155/2020/8879101

Choubey, V., Fatma, E., Smriti, A., Suman, R., & Rajak, S.K. (2023). Testing and evaluation of potato starch based bio plastic. The Pharma Innovation, 12(11), 05–11. https://doi.org/10.22271/tpi.2023.v12.i11a.23947

Daeng Pine, A.T., & Base, N.H. (2021). Uji karakteristik dan sifat mekanik plastik biodegradable dari batang pisang (Musa paradisiaca) dengan variasi konsentrasi selulosa. Media Farmasi, 17(2), 116. https://doi.org/10.32382/mf.v17i2.2271

Danni, E.R., Hasan, A., & Junaidi, R. (2023). Pengaruh penambahan filler dari selulosa tongkol jagung dan zink oksida pada plastik biodegradable. Jurnal Ilmiah Sain Dan Teknologi, 1(3), 92–100.

Das, S., & Kalyani, M.I. (2022). From trash to treasure: Review on upcycling of fruit and vegetable wastes into starch based bioplastics. Preparative Biochemistry & Biotechnology, 53(7), 713–727. https://doi.org/10.1080/10826068.2022.2158470

Dewi, A.P., Mardhiyana, A., Manfaati, R., & Leoanggraini, U. (2023). The effect of additional chitosan and cellulose on the performance of bioplastic from Manihot glaziovii starch. Fluida, 16(1), 36–42. https://doi.org/10.35313/fluida.v16i1.4394

Dinda, D.J., Zulferiyenni, Nurainy, F., & Nawansih, O. (2024). Karakteristik biodegradable film berbasis selulosa bungkil inti sawit (BIS) dengan variasi konsentrasi plasticizer gliserol dan filler glukomanan. Jurnal Agroindustri Berkelanjutan, 3(2), 209–222. https://doi.org/10.23960/jab.v3i2.9298

Elisusanti, Illing, I., & Alam, M.N. (2019). Pembuatan bioplastik berbahan dasar pati kulit pisang kepok/selulosa serbuk kayu gergaji. Cokroaminoto Journal of Chemical Science, 1(1), 14–19.

Farhan, A., & Hani, N.M. (2017). Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids, 64, 48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034

Gabriel, A.A., Rahmawati, A.Y., Taradipa, Y.S., Enomae, T., Muhammad Nur Fauzan, R.M., Thangunpai, K., Indramawarni, S., Halim, A., & Ihsanpuro, S.I. (2024). Canna edulis Ker. starch-based biodegradable plastic materials: Mechanical and morphological properties. Discover Materials, 4(1). https://doi.org/10.1007/s43939-024-00128-z

Hidayati, S., Zuidar, A.S., & Ardiani, A. (2015). Aplikasi sorbitol pada produksi biodegradable film dari Nata De Cassava. Reaktor, 15(3), 195. https://doi.org/10.14710/reaktor.15.3.195-203

Humairi, A.Y., Aji, H.A.F., & Suharti, P.H. (2023). Peningkatan sifat fisik biodegradable film dari kulit pisang kepok (Musa acuminata) dengan variasi penambahan filler dari bahan alam. DISTILAT: Jurnal Teknologi Separasi, 9(1), 20–28. https://doi.org/10.33795/distilat.v9i1.513

Huwaidi, A.F., & Supriyo, E. (2022). Pembuatan plastik biodegradable pati jagung terplastisasi sorbitol dengan pengisi selulosa dari ampas tebu. Equilibrium Journal of Chemical Engineering, 6(1), 1–5. https://doi.org/10.20961/equilibrium.v6i1.62552

Imron H, & Gancang S. (2024). Effect of glycerol and sorbitol plasticizers on bioplastic characteristics of mbote sweet potato starch. Eksakta Journal of Science and Data Analysis, 5(1), 50–56. DOI : 10.20885/eksakta.vol5.iss1.art6

Izzati, A.R.N., Madihah, A.M.H., Nurazzi, N.M., & Haafiz, M.K.M. (2024). The effect of cellulose loadings on the properties of tapioca/banana peels starch bioplastics. Research Square, 1–22. https://doi.org/10.21203/rs.3.rs-4210538/v1

Japanese Industrial Standard. (2019). General Rules of Plastic Films for Food Packaging. JIS Z 1707. Japanese Standards Association, Japan.

Kuswariyah, R., Sitorus, B., Adhitiyawarman, & Antonius. (2023). Mikroselulosa dari serat kulit pinang sebagai bahan pengisi pada bioplastik. Jurnal Ilmu Dasar, 24(1), 91–100.

Lailyningtyas, D.I., Lutfi, M., & Ahmad, A.M. (2020). Uji mekanik bioplastik berbahan pati umbi ganyong (Canna edulis) dengan variasi selulosa asetat dan sorbitol. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(1), 91–100. https://doi.org/10.21776/ub.jkptb.2020.008.01.09

Lounis, F.M., Benhacine, F., & Hadj-Hamou, A.S. (2024). Improving water barrier properties of starch based bioplastics by lignocellulosic biomass addition: Synthesis, characterization and antibacterial properties. International Journal of Biological Macromolecules, 283. https://doi.org/10.1016/j.ijbiomac.2024.137823

Mahmud, R.U., Darda, M.A., Hossain, M.T., Habib, M.A., Nag, R.K., & Sarker, M.P. (2025). Fabrication of waste cotton reinforced corn and potato starch sustainable bioplastics for eco-friendly packaging material. Sustainable Chemistry for the Environment, 11, 1–8. https://doi.org/10.1016/j.scenv.2025.100286

Melani, A., Herawati, N., & Kurniawan, A.F. (2018). Bioplastik pati umbi talas melalui proses melt intercalation. Jurnal Distilasi, 2(2), 53. https://doi.org/10.32502/jd.v2i2.1204

Mohammed, A., Gaduan, A., Chaitram, P., Pooran, A., Lee, K.Y., & Ward, K. (2023). Sargassum inspired, optimized calcium alginate bioplastic composites for food packaging. Food Hydrocolloids, 135, 108192. https://doi.org/10.1016/j.foodhyd.2022.108192

Mulyana, E., Purnamasari, I., & Yerizam, M. (2024). Plastik biodegradable dari selulosa tongkol jagung menggunakan metode solution casting. Jurnal Daur Lingkungan, 7(2), 11–16. https://doi.org/10.33087/daurling.v7i2.308

Orizano-Ponce, E., Santillan, G., Chamorro-Gómez, R.E., Villanueva-Tiburcio, J.E., Estacio-Laguna, R., Cueto-Rosales, C.R., Palma-Lozano, D., Cámara, F., & Cano, D. (2025). Effect of ultrasound on the physical, morphological, and mechanical properties of bioplastic obtained from lucuma seed starch (Pouteria lucuma). Applied Food Research, 5(1). https://doi.org/10.1016/j.afres.2025.100990

Pokhrel, S., Limbu, S.K., & Subedi, S. (2022). Jackfruit starch based blends with Polyvinylpyrrolidone: Preparation, structural characterization, and biodegradable properties. Macromolecular Symposia, 403(1), 1–11. https://doi.org/10.1002/masy.202200063

Putri, F.A., Rianjanu, A., & Sipahutar, W.S. (2024). Cellulose impact on bioplastic performance: A study on mechanical strength, physical properties, and degradation of water hyacinth and kepok banana peel-derived materials. Jurnal Teori dan Aplikasi Fisika, 12(02), 87–96. https://doi.org/10.23960/jtaf.v12i02.407

Putri, R.R.A., Hartiati, A., & Harsojuwono, B.A. (2021). Pengaruh Jenis dan konsentrasi pemlastis terhadap karakteristik komposit bioplastik pati ubi talas belitung (Xanthosoma sagittifolium) - kitosan. Jurnal Rekayasa dan Manajemen Agroindustri, 9(3), 323. https://doi.org/10.24843/jrma.2021.v09.i03.p06

Rosadi, E., Ridlo, A., & Sunaryo. (2024). Penambahan plasticizer sorbitol terhadap karakteristik bioplastik dari limbah dekaragenan Kappaphycus alvarezii (Doty) Doty ex P. C. Silva, 1966. Journal of Marine Research, 13(4), 595–606. https://doi.org/10.14710/jmr.v13i4.40654

Sani, Febrianti, A.N., Putri, D.M.N., & Astuti, D.H. (2023). Preparation of bioplastics from pineapple peel nata and rice washing water. Proceeding of 4th International Conference Eco-Innovation in Science, Engineering, and Technology, 2023, 34–40. https://doi.org/10.11594/nstp.2023.3606

Sriyana, H.Y., Rahayu, L.H., & Febriana, M.E. (2023). Bioplastik dari limbah kulit buah nanas dengan modifikasi gliserol dan kitosan. Jurnal Inovasi Teknik Kimia, 8(1), 40. https://doi.org/10.31942/inteka.v18i1.8094

Sulaiman, N.F.P., Purwadana, A., Wahyudi, B., & Fithriyah, N.H. (2022). Studi literatur pemanfaatan selulosa asetat limbah kulit nanas sebagai bahan baku pembuatan membran untuk desalinasi. Seminar Nasional Sains dan Teknologi, November 2022, 1–8. https://jurnal.umj.ac.id/index.php/semnastek/article/view/14681/0

Sultan, A., Sultan, H., Shahzad, W., Kareem, A., Liaqat, A., Ashraf, Z., Shahid, A., Rauf, A., Saeed, S., Mehmood, T., Zahra, M., Soto-Bubert, A., & Acevedo, R. (2024). Comparative analysis of physical and mechanical properties of starch based bioplastic derived from the pulp and peel of potatoes. Journal of the Indian Chemical Society, 101(10). https://doi.org/10.1016/j.jics.2024.101301

Sumiati, T., Yuningtyas, S., & Haloho, L. E. B. (2023). Delignifikasi lignoselulosa daun nanas (Ananas comosus (L) Merr) untuk produksi alfa selulosa. Pharmamedica Journal, 8(2), 130–137.

Sunardi, S., Trianda, N.F., & Irawati, U. (2020). Pengaruh nanoselulosa dari pelepah nipah sebagai filler terhadap sifat bioplastik polivinil alkohol. Justek: Jurnal Sains dan Teknologi, 3(2), 69. https://doi.org/10.31764/justek.v3i2.3704

Udjiana, S.S., Hadiantoro, S., Syarwani, M., & Suharti, P.H. (2019). Pembuatan dan karakterisasi plastik biodegradable dari umbi talas (Xanthosoma sagittifolium) dengan penambahan filler kitosan dan kalsium Silikat. Jurnal Teknik Kimia dan Lingkungan, 3(1), 10–19. https://doi.org/10.33795/jtkl.v3i1.80

Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118, 722–730. https://doi.org/10.1016/j.ijbiomac.2018.06.089

Wrasiati, L.P., Studi, P., Industri, T., Pertanian, F. T., Udayana, U., & Jimbaran, B. (2022). Isolation of cellulose from coconut fiber (Cocos nucifera L.) at variation of temperature and time of bleaching process with peracetic acid. Jurnal Rekayasa Dan Manajemen Agroindustri, 10(3), 248–258.

Yaqein, A., Humairi, H., Fianto, A.Y.A., Aji, P.H., Suharti, M.K., & Pratiwi. (2023). Peningkatan sifat fisik biodegradable film dari kulit pisang kepok (Musa acuminata) dengan variasi penambahan filler dari bahan alam. Distilat: Jurnal Teknologi Separasi, 9(1), 20-28. https://www.semanticscholar.org/paper/2fc1194049665d82910afb9f9fbaa48347b3819b

Yun, D., Wang, Z., Li, C., Chen, D., & Liu, J. (2023). Antioxidant and antimicrobial packaging films developed based on the peel powder of different citrus fruits: A comparative study. Food Bioscience, 51, 102319. https://doi.org/10.1016/j.fbio.2022.102319

Zamanidehyaghoubi, G., Shahidi, F., Dovom, M.R. E., Mohebbi, M., & Roshanak, S. (2025). Investigating the effect of three different types and concentrations of plasticizers on physico-mechanical properties of pullulan food-packaging films. Food Packaging and Shelf Life, 51, 101590, https://doi.org/10.1016/j.fpsl.2025.101590

Published
2025-12-03
How to Cite
Nanisha, Y., & Agustin, S. (2025). Karakteristik Bioplastik Berbasis Pati Talas Belitung dengan Penguat Selulosa Kulit Nanas dan Pemlastis Sorbitol. AGRITEKNO: Jurnal Teknologi Pertanian, 14(2), 218-227. https://doi.org/10.30598/jagritekno.2025.14.2.218