Karakteristik Bioplastik Berbasis Pati Talas Belitung dengan Penguat Selulosa Kulit Nanas dan Pemlastis Sorbitol
Characteristics of Belitung Taro Starch-Based Bioplastics with Pineapple Peel Cellulose Reinforcements and Sorbitol Plasticizers
Abstract
Bioplastics are plastics made from natural polymers such as starch, cellulose, and sorbitol that are biodegradable. Belitung taro, which contains amylose and amylopectin, plays a crucial role in gel formation, providing flexibility, thermal stability, and biodegradability to bioplastics. Cellulose is a strong, hard, biodegradable, and renewable material, making it a potential additive for bioplastics. Sorbitol is used as an additive to increase the flexibility of bioplastics. This study aims to investigate the effect of incorporating pineapple peel cellulose and sorbitol into Belitung taro starch-based bioplastics. The process involves extracting cellulose from pineapple peel waste, producing bioplastics using the solvent casting method, and testing the mechanical and physical properties of these bioplastics. This research was conducted in a Completely Randomized Design with two factors: the addition of cellulose (3, 4, and 5 g) and sorbitol (3, 4, and 5 g). The data were analyzed using ANOVA and Tukey's test at a 5% significance level. The results indicate that the addition of cellulose and sorbitol has a significant impact on thickness, but no significant effect on water vapor permeability, opacity, solubility, or biodegradation. The color of the bioplastic tends to be blue-gray. Tensile strength meets the BSN 2014 and JIS 2019 standards, with values ranging from 4.322 to 10.110 N/mm², while elongation meets the BSN 2014 standard (39%). The low water vapor permeability (0.0027–0.0094 g/m²/day) and high opacity (5.85–8.91 abs/mm) of the bioplastic produced indicate its potential as UV-resistant food packaging. The bioplastic solubility (0.12–0.25%) meets standards, and the degrades after 14 days of burial according to BSN 2014. Although thickness and permeability do not yet meet standards, this bioplastic is economical with low production costs.
Downloads
References
Afdal, K., Herawati, N., & Hasri, H. (2022). Effect of sorbitol concentrations as plasticizer on biodegradable plastic making from corncob. Chemica: Jurnal Ilmiah Kimia dan Pendidikan Kimia, 23(1), 67.
Akmala, A., & Supriyo, E. (2020). Optimasi konsentrasi selulosa pada pembuatan biodegradable foam dari selulosa dan tepung singkong. Pentana: Jurnal Penelitian Terapan, 1(1), 27–40. https://ejournal2.undip.ac.id/index.php/pentana/article/view/11597
American Society for Testing and Materials. (1995). ASTM E 96-95. Standard Test Method for Water Vapor Transmissions for Materials. ASTM International, West Conshohocken, PA, USA.
American Society for Testing and Materials. (2002). ASTM D 882-02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International, West Conshohocken, PA, USA.
Andahera, C., Sholikhah, I., Islamiati, D.A., & Pusfitasari, M.D. (2019). Pengaruh penambahan jenis dan konsentrasi plasticizer terhadap kualitas bioplastik berbasis selulosa dari tandan kosong kelapa sawit. Indonesian Journal of Pure and Applied Chemistry, 2(2), 46. https://doi.org/10.26418/indonesian.v2i2.36901
Arifin, H.R., Mauliani, Z.A., Harlina, P.W., Subroto, E., Nissa, R. C., & Nawaz, A. (2023). Characteristics of nanocomposite film based on elephant foot-yam starch (Amorphophallus paeoniifolius) with different nanocrystalline cellulose concentration. International Journal of Food Properties, 26(2), 3512–3530. https://doi.org/10.1080/10942912.2023.2286897
Badan Standardisasi Nasional. (2022). Kategori Produk, Kemasan Produk dan Wadah Bioplastik yang dapat Dikomposkan (SNI 7188-7:2022). Badan Standardisasi Nasional, Jakarta.
Chisenga, S.M., Tolesa, G.N., & Workneh, T.S. (2020). Biodegradable food packaging materials and prospects of the fourth industrial revolution for tomato fruit and product handling. International Journal of Food Science, 8879101. https://doi.org/10.1155/2020/8879101
Choubey, V., Fatma, E., Smriti, A., Suman, R., & Rajak, S.K. (2023). Testing and evaluation of potato starch based bio plastic. The Pharma Innovation, 12(11), 05–11. https://doi.org/10.22271/tpi.2023.v12.i11a.23947
Daeng Pine, A.T., & Base, N.H. (2021). Uji karakteristik dan sifat mekanik plastik biodegradable dari batang pisang (Musa paradisiaca) dengan variasi konsentrasi selulosa. Media Farmasi, 17(2), 116. https://doi.org/10.32382/mf.v17i2.2271
Danni, E.R., Hasan, A., & Junaidi, R. (2023). Pengaruh penambahan filler dari selulosa tongkol jagung dan zink oksida pada plastik biodegradable. Jurnal Ilmiah Sain Dan Teknologi, 1(3), 92–100.
Das, S., & Kalyani, M.I. (2022). From trash to treasure: Review on upcycling of fruit and vegetable wastes into starch based bioplastics. Preparative Biochemistry & Biotechnology, 53(7), 713–727. https://doi.org/10.1080/10826068.2022.2158470
Dewi, A.P., Mardhiyana, A., Manfaati, R., & Leoanggraini, U. (2023). The effect of additional chitosan and cellulose on the performance of bioplastic from Manihot glaziovii starch. Fluida, 16(1), 36–42. https://doi.org/10.35313/fluida.v16i1.4394
Dinda, D.J., Zulferiyenni, Nurainy, F., & Nawansih, O. (2024). Karakteristik biodegradable film berbasis selulosa bungkil inti sawit (BIS) dengan variasi konsentrasi plasticizer gliserol dan filler glukomanan. Jurnal Agroindustri Berkelanjutan, 3(2), 209–222. https://doi.org/10.23960/jab.v3i2.9298
Elisusanti, Illing, I., & Alam, M.N. (2019). Pembuatan bioplastik berbahan dasar pati kulit pisang kepok/selulosa serbuk kayu gergaji. Cokroaminoto Journal of Chemical Science, 1(1), 14–19.
Farhan, A., & Hani, N.M. (2017). Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids, 64, 48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034
Gabriel, A.A., Rahmawati, A.Y., Taradipa, Y.S., Enomae, T., Muhammad Nur Fauzan, R.M., Thangunpai, K., Indramawarni, S., Halim, A., & Ihsanpuro, S.I. (2024). Canna edulis Ker. starch-based biodegradable plastic materials: Mechanical and morphological properties. Discover Materials, 4(1). https://doi.org/10.1007/s43939-024-00128-z
Hidayati, S., Zuidar, A.S., & Ardiani, A. (2015). Aplikasi sorbitol pada produksi biodegradable film dari Nata De Cassava. Reaktor, 15(3), 195. https://doi.org/10.14710/reaktor.15.3.195-203
Humairi, A.Y., Aji, H.A.F., & Suharti, P.H. (2023). Peningkatan sifat fisik biodegradable film dari kulit pisang kepok (Musa acuminata) dengan variasi penambahan filler dari bahan alam. DISTILAT: Jurnal Teknologi Separasi, 9(1), 20–28. https://doi.org/10.33795/distilat.v9i1.513
Huwaidi, A.F., & Supriyo, E. (2022). Pembuatan plastik biodegradable pati jagung terplastisasi sorbitol dengan pengisi selulosa dari ampas tebu. Equilibrium Journal of Chemical Engineering, 6(1), 1–5. https://doi.org/10.20961/equilibrium.v6i1.62552
Imron H, & Gancang S. (2024). Effect of glycerol and sorbitol plasticizers on bioplastic characteristics of mbote sweet potato starch. Eksakta Journal of Science and Data Analysis, 5(1), 50–56. DOI : 10.20885/eksakta.vol5.iss1.art6
Izzati, A.R.N., Madihah, A.M.H., Nurazzi, N.M., & Haafiz, M.K.M. (2024). The effect of cellulose loadings on the properties of tapioca/banana peels starch bioplastics. Research Square, 1–22. https://doi.org/10.21203/rs.3.rs-4210538/v1
Japanese Industrial Standard. (2019). General Rules of Plastic Films for Food Packaging. JIS Z 1707. Japanese Standards Association, Japan.
Kuswariyah, R., Sitorus, B., Adhitiyawarman, & Antonius. (2023). Mikroselulosa dari serat kulit pinang sebagai bahan pengisi pada bioplastik. Jurnal Ilmu Dasar, 24(1), 91–100.
Lailyningtyas, D.I., Lutfi, M., & Ahmad, A.M. (2020). Uji mekanik bioplastik berbahan pati umbi ganyong (Canna edulis) dengan variasi selulosa asetat dan sorbitol. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(1), 91–100. https://doi.org/10.21776/ub.jkptb.2020.008.01.09
Lounis, F.M., Benhacine, F., & Hadj-Hamou, A.S. (2024). Improving water barrier properties of starch based bioplastics by lignocellulosic biomass addition: Synthesis, characterization and antibacterial properties. International Journal of Biological Macromolecules, 283. https://doi.org/10.1016/j.ijbiomac.2024.137823
Mahmud, R.U., Darda, M.A., Hossain, M.T., Habib, M.A., Nag, R.K., & Sarker, M.P. (2025). Fabrication of waste cotton reinforced corn and potato starch sustainable bioplastics for eco-friendly packaging material. Sustainable Chemistry for the Environment, 11, 1–8. https://doi.org/10.1016/j.scenv.2025.100286
Melani, A., Herawati, N., & Kurniawan, A.F. (2018). Bioplastik pati umbi talas melalui proses melt intercalation. Jurnal Distilasi, 2(2), 53. https://doi.org/10.32502/jd.v2i2.1204
Mohammed, A., Gaduan, A., Chaitram, P., Pooran, A., Lee, K.Y., & Ward, K. (2023). Sargassum inspired, optimized calcium alginate bioplastic composites for food packaging. Food Hydrocolloids, 135, 108192. https://doi.org/10.1016/j.foodhyd.2022.108192
Mulyana, E., Purnamasari, I., & Yerizam, M. (2024). Plastik biodegradable dari selulosa tongkol jagung menggunakan metode solution casting. Jurnal Daur Lingkungan, 7(2), 11–16. https://doi.org/10.33087/daurling.v7i2.308
Orizano-Ponce, E., Santillan, G., Chamorro-Gómez, R.E., Villanueva-Tiburcio, J.E., Estacio-Laguna, R., Cueto-Rosales, C.R., Palma-Lozano, D., Cámara, F., & Cano, D. (2025). Effect of ultrasound on the physical, morphological, and mechanical properties of bioplastic obtained from lucuma seed starch (Pouteria lucuma). Applied Food Research, 5(1). https://doi.org/10.1016/j.afres.2025.100990
Pokhrel, S., Limbu, S.K., & Subedi, S. (2022). Jackfruit starch based blends with Polyvinylpyrrolidone: Preparation, structural characterization, and biodegradable properties. Macromolecular Symposia, 403(1), 1–11. https://doi.org/10.1002/masy.202200063
Putri, F.A., Rianjanu, A., & Sipahutar, W.S. (2024). Cellulose impact on bioplastic performance: A study on mechanical strength, physical properties, and degradation of water hyacinth and kepok banana peel-derived materials. Jurnal Teori dan Aplikasi Fisika, 12(02), 87–96. https://doi.org/10.23960/jtaf.v12i02.407
Putri, R.R.A., Hartiati, A., & Harsojuwono, B.A. (2021). Pengaruh Jenis dan konsentrasi pemlastis terhadap karakteristik komposit bioplastik pati ubi talas belitung (Xanthosoma sagittifolium) - kitosan. Jurnal Rekayasa dan Manajemen Agroindustri, 9(3), 323. https://doi.org/10.24843/jrma.2021.v09.i03.p06
Rosadi, E., Ridlo, A., & Sunaryo. (2024). Penambahan plasticizer sorbitol terhadap karakteristik bioplastik dari limbah dekaragenan Kappaphycus alvarezii (Doty) Doty ex P. C. Silva, 1966. Journal of Marine Research, 13(4), 595–606. https://doi.org/10.14710/jmr.v13i4.40654
Sani, Febrianti, A.N., Putri, D.M.N., & Astuti, D.H. (2023). Preparation of bioplastics from pineapple peel nata and rice washing water. Proceeding of 4th International Conference Eco-Innovation in Science, Engineering, and Technology, 2023, 34–40. https://doi.org/10.11594/nstp.2023.3606
Sriyana, H.Y., Rahayu, L.H., & Febriana, M.E. (2023). Bioplastik dari limbah kulit buah nanas dengan modifikasi gliserol dan kitosan. Jurnal Inovasi Teknik Kimia, 8(1), 40. https://doi.org/10.31942/inteka.v18i1.8094
Sulaiman, N.F.P., Purwadana, A., Wahyudi, B., & Fithriyah, N.H. (2022). Studi literatur pemanfaatan selulosa asetat limbah kulit nanas sebagai bahan baku pembuatan membran untuk desalinasi. Seminar Nasional Sains dan Teknologi, November 2022, 1–8. https://jurnal.umj.ac.id/index.php/semnastek/article/view/14681/0
Sultan, A., Sultan, H., Shahzad, W., Kareem, A., Liaqat, A., Ashraf, Z., Shahid, A., Rauf, A., Saeed, S., Mehmood, T., Zahra, M., Soto-Bubert, A., & Acevedo, R. (2024). Comparative analysis of physical and mechanical properties of starch based bioplastic derived from the pulp and peel of potatoes. Journal of the Indian Chemical Society, 101(10). https://doi.org/10.1016/j.jics.2024.101301
Sumiati, T., Yuningtyas, S., & Haloho, L. E. B. (2023). Delignifikasi lignoselulosa daun nanas (Ananas comosus (L) Merr) untuk produksi alfa selulosa. Pharmamedica Journal, 8(2), 130–137.
Sunardi, S., Trianda, N.F., & Irawati, U. (2020). Pengaruh nanoselulosa dari pelepah nipah sebagai filler terhadap sifat bioplastik polivinil alkohol. Justek: Jurnal Sains dan Teknologi, 3(2), 69. https://doi.org/10.31764/justek.v3i2.3704
Udjiana, S.S., Hadiantoro, S., Syarwani, M., & Suharti, P.H. (2019). Pembuatan dan karakterisasi plastik biodegradable dari umbi talas (Xanthosoma sagittifolium) dengan penambahan filler kitosan dan kalsium Silikat. Jurnal Teknik Kimia dan Lingkungan, 3(1), 10–19. https://doi.org/10.33795/jtkl.v3i1.80
Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118, 722–730. https://doi.org/10.1016/j.ijbiomac.2018.06.089
Wrasiati, L.P., Studi, P., Industri, T., Pertanian, F. T., Udayana, U., & Jimbaran, B. (2022). Isolation of cellulose from coconut fiber (Cocos nucifera L.) at variation of temperature and time of bleaching process with peracetic acid. Jurnal Rekayasa Dan Manajemen Agroindustri, 10(3), 248–258.
Yaqein, A., Humairi, H., Fianto, A.Y.A., Aji, P.H., Suharti, M.K., & Pratiwi. (2023). Peningkatan sifat fisik biodegradable film dari kulit pisang kepok (Musa acuminata) dengan variasi penambahan filler dari bahan alam. Distilat: Jurnal Teknologi Separasi, 9(1), 20-28. https://www.semanticscholar.org/paper/2fc1194049665d82910afb9f9fbaa48347b3819b
Yun, D., Wang, Z., Li, C., Chen, D., & Liu, J. (2023). Antioxidant and antimicrobial packaging films developed based on the peel powder of different citrus fruits: A comparative study. Food Bioscience, 51, 102319. https://doi.org/10.1016/j.fbio.2022.102319
Zamanidehyaghoubi, G., Shahidi, F., Dovom, M.R. E., Mohebbi, M., & Roshanak, S. (2025). Investigating the effect of three different types and concentrations of plasticizers on physico-mechanical properties of pullulan food-packaging films. Food Packaging and Shelf Life, 51, 101590, https://doi.org/10.1016/j.fpsl.2025.101590
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




