OPTIMIZATION OF PROTOPLAST ISOLATION FROM DIFFERENT TYPES OF SAMPLES
Abstract
Isolation of protoplasts in several plant species still requires optimization to produce protoplasts that are viable and can be used for further analysis. This research aims to optimize protoplast isolation protocols in several plants: Orchid Dendrobium macrocarpus, potato Solanum tuberosum, and microalgae Phaeodactylum tricornutum, Botryococcus braunii, and Spirulina sp. The results showed that in vitro explant selection had higher sample uniformity, and a combination of enzyme solutions could be used to increase the effectiveness of protoplast isolation on D. macrocarpus, S. tuberosum, and Spirulina sp. This study provides information about protoplast isolation techniques and testing their viability as an attempt for plant breeding through micropropagation.
Downloads
References
Bertini, E., Tornielli, G. B., Pezzotti, M., & Zenoni, S. (2019). Regeneration of plants from embryogenic callus-derived protoplasts of Garganega and Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell, Tissue and Organ Culture (PCTOC), 138(2), 239–246. https://doi.org/10.1007/s11240-019-01619-1
Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., & Chevreau, E. (2019). Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Frontiers in Plant Science, 10. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.00040
Das, A., Gosal, S. S., Sidhu, J. S., & Dhaliwal, H. S. (2000). Induction of mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica, 114(3), 205–209. https://doi.org/10.1023/A:1003965724880
Hahne, G., Herth, W., & Hoffmann, F. (1983). Wall formation and cell division in fluorescence-labelled plant protoplasts. Protoplasma, 115(2), 217–221. https://doi.org/10.1007/BF01279812
Jia, N., Zhu, Y., & Xie, F. (2018). An Efficient Protocol for Model Legume Root Protoplast Isolation and Transformation. Frontiers in Plant Science, 9. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2018.00670
Kanchanapoom, K. (2001). Isolation and Fusion of Protoplasts from Mesophyll Cells of Dendrobium Pompadour. https://www.researchgate.net/publication/255587489
Larkin, P. J. (1976). Purification and viability determinations of plant protoplasts. Planta, 128(3), 213–216. https://doi.org/10.1007/BF00393231
Li, J., Liao, X., Zhou, S., Liu, S., Jiang, L., & Wang, G. (2018). Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty.’ In Vitro Cellular & Developmental Biology - Plant, 54(1), 87–93. https://doi.org/10.1007/s11627-017-9872-z
Lopez-Arellano, M., Dhir, S., Albino, N., Santiago, A., Morris, T., & Dhir, S. (2015). Somatic Embryogenesis and Plantlet Regeneration from Protoplast Culture of Stevia rebaudiana. British Biotechnology Journal, 5(1), 1–12. https://doi.org/10.9734/bbj/2015/13884
Menke, U., Schilde-Rentschler, L., Ruoss, B., Zanke, C., Hemleben, V., & Ninnemann, H. (1996). Somatic hybrids between the cultivated potato Solanum tuberosum L. and the 1EBN wild species Solanum pinnatisectum Dun.: morphological and molecular characterization. Theoretical and Applied Genetics, 92(5), 617–626. https://doi.org/10.1007/BF00224566
Moon, K. B., Park, J. S., Park, S. J., Lee, H. J., Cho, H. S., Min, S. R., Park, Y. Il, Jeon, J. H., & Kim, H. S. (2021). A more accessible, time-saving, and efficient method for in vitro plant regeneration from potato protoplasts. Plants, 10(4). https://doi.org/10.3390/plants10040781
Reed, K. M., & Bargmann, B. O. R. (2021). Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Frontiers in Genome Editing, 3. https://www.frontiersin.org/articles/10.3389/fgeed.2021.734951
Ren, R., Gao, J., Lu, C., Wei, Y., Jin, J., Wong, S. M., Zhu, G., & Yang, F. (2020). Highly efficient protoplast isolation and transient expression system for functional characterization of flowering related genes in Cymbidium orchids. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072264
Ren, R., Gao, J., Yin, D., Li, K., Lu, C., Ahmad, S., Wei, Y., Jin, J., Zhu, G., & Yang, F. (2021). Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.626015
Shao, Y., Mu, D., Pan, L., Wilson, I. W., Zheng, Y., Zhu, L., Lu, Z., Wan, L., Fu, J., Wei, S., Song, L., Qiu, D., & Tang, Q. (2023). Optimization of Isolation and Transformation of Protoplasts from Uncaria rhynchophylla and Its Application to Transient Gene Expression Analysis. International Journal of Molecular Sciences, 24(4). https://doi.org/10.3390/ijms24043633
Sihachakr, D., Haicour, R., Chaput, M.-H., Barrientos, E., Ducreux, G., & Rossignol, L. (1989). Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. In Theor Appl Genet (Vol. 77).
Sun, B., Zhang, F., Xiao, N., Jiang, M., Yuan, Q., Xue, S., Miao, H., Chen, Q., Li, M., Wang, X., Wang, Q., & Tang, H. (2018). An efficient mesophyll protoplast isolation, purification and PEG-mediated transient gene expression for subcellular localization in Chinese kale. Scientia Horticulturae, 241, 187–193. https://doi.org/10.1016/j.scienta.2018.07.001
Tu, W., Dong, J., Zou, Y., Zhao, Q., Wang, H., Ying, J., Wu, J., Du, J., Cai, X., & Song, B. (2021). Interspecific potato somatic hybrids between Solanum malmeanum and S. tuberosum provide valuable resources for freezing-tolerance breeding. Plant Cell, Tissue and Organ Culture (PCTOC), 147(1), 73–83. https://doi.org/10.1007/s11240-021-02106-2
Wang, H., Wang, W., Zhan, J., Huang, W., & Xu, H. (2015). An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Scientia Horticulturae, 191, 82–89. https://doi.org/10.1016/j.scienta.2015.04.039
Yao, L., Liao, X., Gan, Z., Peng, X., Wang, P., Li, S., & Li, T. (2016). Protoplast isolation and development of a transient expression system for sweet cherry (Prunus avium L.). Scientia Horticulturae, 209, 14–21. https://doi.org/10.1016/j.scienta.2016.06.003
Copyright (c) 2024 Windi Mose, Syahran Wael
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who propose a manuscript and have it approved for publication know that the manuscript will be registered and become part of the RPBJ. Authors and readers understand that this journal is open and all its contents can be accessed freely, provided that RPBJ is still listed as the source of information. The hope is that this journal can become a vehicle for exchange and scientific knowledge for society and the scientific community, especially in the field of Biology and other branches of science.