ON THE TOTAL VERTEX IRREGULARITY STRENGTH OF SERIES PARALLEL GRAPH sp(m,r,4)

  • Corry Corazon Marzuki Mathematics Department, Islamic State University Sultan Syarif Kasim Riau, Indonesia
  • Aminah Utami Mathematics Department, Islamic State University Sultan Syarif Kasim Riau, Indonesia
  • Mona Elviyenti Electronica and Communications Department, Polytechnic Caltex Riau, Indonesia
  • Yuslenita Muda Mathematics Department, Islamic State University Sultan Syarif Kasim Riau, Indonesia
Keywords: Series Parallel Graph, Total Vertex Irregularity Strength, Total Vertex Irregular Labeling

Abstract

his study aims to determine the total vertex irregularity strength on a series parallel graph for  and . Total labeling is said to be vertex irregular, if the weights for each vertices are different. Determination of the total vertex irregularity of series parallel graph is done by obtaining the largest lower bound and the smallest upper bound. The lower bound is obtained by analyzing the structure of the graph to obtain the largest minimum label of k and the upper bound is analyzed by labeling the vertices and edges of the graph, where the largest label is k and the values for each vertices weight is different. The result obtained for the total vertex irregularity strength of a series parallel graph  is .

Downloads

Download data is not yet available.

Author Biography

Aminah Utami, Mathematics Department, Islamic State University Sultan Syarif Kasim Riau, Indonesia

Department Mathematics

References

E. Kay, J. A. Bondy, and U. S. R. Murty, “Graph Theory with Applications,” Oper. Res. Q., vol. 28, no. 1, p. 237, 1977, doi: 10.2307/3008805.

R. Munir, Discrete Mathematics. Bandung: Penerbit Informatika, 2010.

E. Wiesstein, “Labeled Graph,” Wolfram Mathworld. https://mathworld.wolfram.com/LabeledGraph.html.

N. Hinding, W. Aritonang, A. K. Amir, and U. Hasanuddin, “On total irregularity strength of graph Cn x P3,” Pros. Semin. Nas., vol. 04, no. 1, pp. 217–223, 2017.

J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

C. G., Jacobson, M. S., Lehel, J., Oellermann, O. R., Ruiz, S., & Saba, F., “Irregular Networks,” Congr, no. 64, pp. 197–210, 1988.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007, doi: 10.1016/j.disc.2005.11.075.

N. Hinding, D. Firmayasari, H. Basir, M. Bača, and A. Semaničová-Feňovčíková, “On irregularity strength of diamond network,” AKCE Int. J. Graphs Comb., vol. 15, no. 3, pp. 291–297, 2018, doi: 10.1016/j.akcej.2017.10.003.

T. Winarsih and D. Indriati, “Total edge irregularity strength of (n,t)-kite graph,” J. Phys. Conf. Ser., vol. 1008, no. 1, 2018, doi: 10.1088/1742-6596/1008/1/012049.

R. W. Putra and Y. Susanti, “On total edge irregularity strength of centralized uniform theta graphs,” AKCE Int. J. Graphs Comb., vol. 15, no. 1, pp. 7–13, 2018, doi: 10.1016/j.akcej.2018.02.002.

R. Ramdani, “On the total vertex irregularity strength of comb product of two cycles and two stars,” Indones. J. Comb., vol. 3, no. 2, p. 79, 2020, doi: 10.19184/ijc.2019.3.2.2.

C. C. Marzuki, “The Total Edge Irregularity Strength of the m-Copy Path Graph,” J. Sci. Mat. Stat., vol. 5, no. 1, pp. 90–98, 2019.

I. Rosyida, Mulyono, and D. Indriati, “Determining total vertex irregularity strength of Tr(4, 1) tadpole chain graph and its computation,” Procedia Comput. Sci., vol. 157, pp. 699–706, 2019, doi: 10.1016/j.procs.2019.09.152.

Y. Susanti, Y. Indah Puspitasari, and H. Khotimah, “On total edge irregularity strength of staircase graphs and related graphs,” Iran. J. Math. Sci. Informatics, vol. 15, no. 1, pp. 1–13, 2020, doi: 10.29252/ijmsi.15.1.1.

N. Hinding, H. K. Kim, N. Sunusi, and R. Mise, “On Total Vertex Irregularity Strength of Hexagonal Cluster Graphs,” Int. J. Math. Math. Sci., vol. 2021, 2021, doi: 10.1155/2021/2743858.

I. Rajasingh and S. T. Arockiamary, “Total edge irregularity strength of series parallel graphs,” Int. J. Pure Appl. Math., vol. 99, no. 1, pp. 11–21, 2015, doi: 10.12732/ijpam.v99i1.2.

L. Yuliarti, “Total Vertex Irregularity Strength on a Parallel Series Graph (m, 1,3),” 2019.

H. Riskawati, Nurdin, “The Total Vertex Irregularity Strength on a Series Parallel Graph,” vol. 1, no. 2, pp. 1–5, 2019.

Published
2024-03-01
How to Cite
[1]
C. Marzuki, A. Utami, M. Elviyenti, and Y. Muda, “ON THE TOTAL VERTEX IRREGULARITY STRENGTH OF SERIES PARALLEL GRAPH sp(m,r,4)”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0213-0222, Mar. 2024.