MAPPING OF GENDER INEQUALITY IN INDONESIA BASED ON INFLUENCING FACTORS USING GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION

  • Hani Khaulasari Mathematics, Faculty of Science and Technology, UIN Sunan Ampel Surabaya, Indonesia
  • Fadjar Suhaeri Badan Pusat Statistik Surabaya, Indonesia
Keywords: Gender Inequality, Ordinal Logistics Regression, GWOLR, Accuracy, Mapping Gender

Abstract

Gender inequality is a condition of discrimination between men and women that results from unequal social systems and structures. Gender inequality is measured based on the gender inequality index (IKG). This research aims to map gender inequality in Indonesia based on influencing factors and compare classification accuracy results between the GWOLR and ordinal logistic regression model. Data was obtained from the Indonesian Central Statistics Agency (BPS RI) and KemenPPPA in the year of 2022. The Gender Inequality Index data as the response variable is categorized using an ordinal data scale, namely IKG (1) Low, IKG (2) Middle, and IKG (3) High with ten predictor variables from the dimensions of health, education, human empowerment, socio-culture, and employment, with the amount of data is 34 observation data. The research method uses geographically weighted ordinal logistic regression (GWOLR) based on exponential kernel weighting. In the data analysis stage, ordinal logistic regression is performed before applying GWOLR, and after the model is formed, the classification accuracy will be calculated. The results of this study indicate that mapping gender inequality in Indonesia based on influencing factors using the GWOLR model forms three groups. The first mapping location labeled as low inequality is influenced by women whose birth was attended by a health worker (X1), women who have a pre-employment card (X7), women who are employed (X8), and the percentage of women who married before the age of 17 (X10). The second mapping location labeled with middle inequality is influenced by women whose delivery is attended by a health worker (X1), women's net enrolment in higher education (X2), and women married before the age of 17 (X10). The three locations categorized as high inequality are influenced by female birth attendance by health personnel (X1), Women's Human Development Index (X3), female rape offenses (X4), female domestic violence offenses (X6), and female marriage under the age of 17 (X10). Modeling the Gender Inequality Index using the GWOLR model resulted in higher classification accuracy than the ordinal logistic regression model, which was 94.11%.

Downloads

Download data is not yet available.

References

S. Ponthieux and D. Meurs, “Chapter 12 - Gender Inequality,” in Handbook of Income Distribution, A. B. Atkinson and F. Bourguignon, Eds., in Handbook of Income Distribution, vol. 2. Elsevier, 2015, pp. 981–1146. doi: 10.1016/B978-0-444-59428-0.00013-8.

Y. H. Sidiq and M. Erihadiana, “Gender dalam Pandangan Islam,” JIIP-J. Ilm. Ilmu PendidikanJIIP-J. Ilm. Ilmu Pendidik., vol. 5, no. 3, pp. 875–882, Mar. 2022.

Maslamah and S. Muzani, “Konsep-Konsep Tentang Gender Perspektif Islam,” SAWWA, vol. 9, no. 2, pp. 275–286, Apr. 2014.

Y. Sulistyowati, “Kesetaraan Gender Dalam Lingkup Pendidikan dan Tata Sosial,” IJouGS Indones. J. Gend. Stud., vol. 1, no. 2, Art. no. 2, Jan. 2021, doi: 10.21154/ijougs.v1i2.2317.

Tim Kemen PPPA, Pembangunan Manusia Berbasis Gender. Jakarta: Kementerian Pemberdayaan Perempuan dan Perlindungan Anak Republik Indonesia, 2022. [Online]. Available: https://www.kemenpppa.go.id/index.php/page/read/38/4365/pembangunan-manusia-berbasis-gender-tahun-2022

A. Karimah and H. Susanti, “Gender Inequality in Education and Regional Economic Growth in Indonesia,” J. Ekon. Pembang., vol. 20, no. 1, Art. no. 1, Aug. 2022, doi: 10.29259/jep.v20i1.17841.

BPS, Kajian Penghitungan Indeks Ketimpangan Gender 2021. Jakarta: BPS Republik Indonesia, 2021.

A. Wahid, “Instruksi Presiden Republik Indonesia Nomor 9 Tahun 2000 Tentang Pengarusutamaan Gender Dalam Pembangunan Nasional Presiden Republik Indonesia,” 2000. [Online]. Available: https://peraturan.go.id/files/ip9-2000.pdf

N. L. Musyafaah, A. Safiudin, and H. Syafaq, “Peran Pusat Studi Gender dan Anak dalam Mencegah Kekerasan Seksusal di Kampus Perspektif Hukum Pidana Islam,” Al-Jinâyah J. Huk. Pidana Islam, vol. 8, no. 2, pp. 117–140, 2022.

Team UNDP, “Gender Equality.” United Nations Development Programme, Jakarta, 2023. [Online]. Available: https://www.undp.org/sustainable-development-goals/gender-equality

Team Kementerian PPN/Bappenas, “Kesetaraan Gender,” Tujuan Pembangunan Berkelanjutan SDG’s, 2023. https://sdgs.bappenas.go.id/tujuan-5/

Marsono, “Deteksi Spasial Pada Model Indeks Ketimpangan Gender Indonesia,” Buana Gend., vol. 6, no. 1, pp. 49–66, 2021.

R. N. Pradita, H. Yasin, and D. Safitri, “Pemodelan Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Kabupaten/Kota Di Jawa Timur Menggunakan Geographically Weighted Ordinal Logistic Regression,” J. Gaussian, vol. 4, no. 3, Art. no. 3, Jul. 2015, doi: 10.14710/j.gauss.4.3.639-650.

A. R. Wardani, N. Gusriani, and D. A. Kusuma, “Pemetaan Zonasi Resiko Covid-19 Di Provinsi Jawa Barat Menggunakan Model Geographically Weighted Ordinal Logistic Regression (GWOLR),” Teorema Teori Dan Ris. Mat., vol. 7, no. 1, pp. 193-204, 2022.

S. Zuhdi, D. R. Sari Saputro, and P. Widyaningsih, “Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model,” J. Phys. Conf. Ser., vol. 855, p. 012064, Jun. 2017, doi: 10.1088/1742-6596/855/1/012064.

G. Dong, T. Nakaya, and C. Brunsdon, “Geographically weighted regression models for ordinal categorical response variables: An application to geo-referenced life satisfaction data,” Comput. Environ. Urban Syst., vol. 70, pp. 35–42, Jul. 2018, doi: 10.1016/j.compenvurbsys.2018.01.012.

A. S. Fotheringham and T. M. Oshan, “Geographically weighted regression and multicollinearity: Dispelling the myth,” J. Geogr. Syst., vol. 18, pp. 303–329, 2016.

Purhadi, M. Rifada, and S. P. Wulandari, “Geographically Weighted Ordinal Logistic Regression Model,” Int. J. Math. Comput., vol. 16, no. 3, Art. no. 3, May 2012.

N. F. Gamayanti, J. Junaidi, F. Fadjryani, and N. Nur’eni, “Analysis Of Spatial Effect On Factors Affecting Rice Production In Central Sulawesi Using Geographically Weigthed Panel Regression,” BAREKENG J. Ilmu Mat. Dan Terap., vol. 17, no. 1, Art. no. 1, Apr. 2023, doi: 10.30598/barekengvol17iss1pp0361-0370.

R. Amalah, A. K. Jaya, and N. Sirajang, “Pemodelan Geographically Weighted Logistic Regression dengan Metode Ridge,” ESTIMASI J. Stat. Its Appl., pp. 130–143, Aug. 2023, doi: 10.20956/ejsa.v4i2.12250.

M. Fathurahman, “Hypothesis testing of Geographically weighted bivariate logistic regression,” J. Phys. Conf. Ser., vol. 1417, pp. 1–8, 2019, doi: doi:10.1088/1742-6596/1417/1/012008.

R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis sixth edition. New Jersey: Pretince Hall, 2007.

S. E. Setyowati, A. R. S. Dunggio, and R. R. Pudyastuti, “Peran Dukun dalam Budaya Melahirkan Suku Nuaulu di Pulau Seram Maluku Tengah,” J. Pendidik. Tambusai, vol. 6, no. 1, pp. 3336–3341, 2022.

S. Nurhidayanti, A. Margawati, and M. Irene, “Kepercayaan Masyarakat terhadap Penolong Persalinan di Wilayah Halmahera Utara,” J. Promosi Kesehat. Indones., vol. 13, no. 1, pp. 46–60, 2018.

H. Khaulasari, Analisis Ketimpangan Gender di Indonesia Dengan GWLR Tahun 2023. Surabaya: LPPM UINSA Surabaya, 2023.

Y. Bawono, S. Setyaningsih, L. M. Hanim, M. Masrifah, and J. S. Astuti, “Budaya dan Pernikahan Dini di Indonesia,” J. Din. Sos. Budaya, vol. 24, no. 1, Art. no. 1, May 2022, doi: 10.26623/jdsb.v24i1.3508.

Published
2024-03-01
How to Cite
[1]
H. Khaulasari and F. Suhaeri, “MAPPING OF GENDER INEQUALITY IN INDONESIA BASED ON INFLUENCING FACTORS USING GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0233-0244, Mar. 2024.