NUMERICAL MODELING OF THE 1998 PAPUA NEW GUINEA TSUNAMI USING THE COMCOT

  • Zulfa Qonita Research Center for Geological Disaster, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Indonesia
  • Shofia Karima Research Center for Geological Disaster, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Indonesia https://orcid.org/0000-0002-1026-526X
  • Alfi Rusdiansyah Research Center for Geological Disaster, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Indonesia https://orcid.org/0000-0003-0028-7171
  • Ritha Riyandari Research Center for Geological Disaster, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Indonesia
Keywords: Papua New Guinea, Tsunami, Landslide, Earthquake, COMCOT

Abstract

The Papua New Guinea tsunami of 1998 is a unique phenomenon because the source of the tsunami propagation has been speculated. There was a 7.1-magnitude earthquake on July 17, 1998, at 18:49 WIT before the tsunami hit the Aitape area. However, previous studies have shown that the leading cause of the tsunami was not the earthquake but a submarine landslide. One of the steps to simulating the event is to do tsunami modeling. A tsunami propagation simulation will be conducted using Cornell Multi-grid Coupled Tsunami (COMCOT). This simulation was carried out with three scenarios to see which had the most significant effect on the tsunami event. The first scenario uses a tsunami source from a 7.1 magnitude earthquake, the following scenario is carried out using avalanche parameters, and the last scenario is a scenario with a combined source of earthquake and avalanche. The results of this study indicate that underwater landslides are the source of a tsunami similar to the original event.

Downloads

Download data is not yet available.

References

F. Dias and D. Dutykh, “Dynamics of Tsunami waves,” NATO Secur. through Sci. Ser. C Environ. Secur., pp. 201–224, 2007, doi: 10.1007/978-1-4020-5656-7_8.

E. Bryant, Tsunami: The underrated hazard (Third Edition). 2014. doi: https://doi.org/10.1007/978-3-319-06133-7.

D. R. Tappin, P. Watts, and S. T. Grilli, “The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event,” Nat. Hazards Earth Syst. Sci., vol. 8, no. 2, pp. 243–266, 2008, doi: 10.5194/nhess-8-243-2008.

D. R. Tappin, “Submarine landslides and their tsunami hazard,” Annu. Rev. Earth Planet. Sci., vol. 49, pp. 551–578, 2021, doi: 10.1146/annurev-earth-063016-015810.

R. W. Johnson, “Aitape Story : the Great New Guinea Tsunami of 1998,” vol. 33, no. 2, 2018.

D. R. Tappin, P. Watts, G. M. Mcmurtry, Y. Lafoy, and T. Matsumoto, “Prediction of Slump Generated Tsunamis: The July 17th 1998 Papua New Guinea Event,” pp. 1–23, 2016.

M. Heidarzadeh and K. Satake, “Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records,” Geophys. J. Int., vol. 202, no. 1, pp. 361–369, 2015, doi: 10.1093/gji/ggv145.

H. L. Davies, “The geology of New Guinea -the cordilleran margin of the Australian continent,” Episodes, vol. 35, no. 1, pp. 87–102, 2012, doi: 10.18814/epiiugs/2012/v35i1/008.

J. A. Reid and W. D. Mooney, “Tsunami Occurrence 1900–2020: A Global Review, with Examples from Indonesia,” Pure Appl. Geophys., vol. 180, no. 5, pp. 1549–1571, 2023, doi: 10.1007/s00024-022-03057-1.

J. Biemiller, A. A. Gabriel, and T. Ulrich, “The Dynamics of Unlikely Slip: 3D Modeling of Low-Angle Normal Fault Rupture at the Mai’iu Fault, Papua New Guinea,” Geochemistry, Geophys. Geosystems, vol. 23, no. 5, pp. 1–22, 2022, doi: 10.1029/2021GC010298.

A. V Newman and E. A. Okal, “for tsunami earthquakes = p • Io,” Event (London), vol. 103, no. 98, pp. 26885-, 1998.

E. L. Geist, “Origin of the 17 July 1998 Papua New Guinea tsunami: Earthquake or landslide?,” Seismol. Res. Lett., vol. 71, no. 3, pp. 344–351, 2000, doi: 10.1785/gssrl.71.3.344.

H. L. Davies, J. M. Davies, R. C. B. Perembo, and W. Y. Lus, “The Aitape 1998 tsunami: Reconstructing the event from interviews and field mapping.,” 1998.

P. Watts, S. T. Grilli, J. T. Kirby, G. J. Fryer, and D. R. Tappin, “Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model,” Nat. Hazards Earth Syst. Sci., vol. 3, no. 5, pp. 391–402, 2003, doi: 10.5194/nhess-3-391-2003.

P. H. Heinrich, A. Piatanesi, and H. Hébert, “Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event,” Geophys. J. Int., vol. 145, no. 1, pp. 97–111, 2001, doi: 10.1111/j.1365-246X.2001.00336.x.

K. Satake and Y. Tanioka, “The July 1998 Papua New Guinea earthquake: Mechanism and quantification of unusual tsunami generation,” Pure Appl. Geophys., vol. 160, no. 10–11, pp. 2087–2118, 2003, doi: 10.1007/s00024-003-2421-1.

G. Ma, J. T. Kirby, and F. Shi, “Numerical simulation of tsunami waves generated by deformable submarine landslides,” Ocean Model., vol. 69, pp. 146–165, 2013, doi: 10.1016/j.ocemod.2013.07.001.

A. Koulali, P. Tregoning, S. Mcclusky, R. Stanaway, L. Wallace, and G. Lister, “New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS,” Geophys. J. Int., vol. 202, no. 2, pp. 993–1004, 2015, doi: 10.1093/gji/ggv200.

S. L. Baldwin, P. G. Fitzgerald, and L. E. Webb, “Tectonics of the new Guinea region,” Annu. Rev. Earth Planet. Sci., vol. 40, no. June 2014, pp. 495–520, 2012, doi: 10.1146/annurev-earth-040809-152540.

M. Al’ala, Syamsidik, T. M. Rasyif, and M. Fahmi, “Numerical simulation of ujong seudeun land separation caused by the 2004 Indian ocean tsunami, Aceh-Indonesia,” Sci. Tsunami Hazards, vol. 34, no. 3, pp. 159–172, 2015.

F. A. Tri Laksono, M. R. Aditama, R. Setijadi, and G. Ramadhan, “Run-up Height and Flow Depth Simulation of the 2006 South Java Tsunami Using COMCOT on Widarapayung Beach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 982, no. 1, 2020, doi: 10.1088/1757-899X/982/1/012047.

K. T. Chau and K. T. S. Lam, “Field Observations and Numerical Simulations of the 2011 Tohoku Tsunami Using COMCOT,” Comput. Methods Recent Adv. Geomech. - Proc. 14th Int. Conf. Int. Assoc. Comput. Methods Recent Adv. Geomech. IACMAG 2014, pp. 1841–1846, 2015.

C. An, I. Sepúlveda, and P. L. F. Liu, “Tsunami source and its validation of the 2014 Iquique, Chile, earthquake,” Geophys. Res. Lett., vol. 41, no. 11, pp. 3988–3994, 2014, doi: 10.1002/2014GL060567.

M. Heidarzadeh, A. R. Gusman, T. Ishibe, R. Sabeti, and J. Šepić, “Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling,” Ocean Eng., vol. 261, no. April, 2022, doi: 10.1016/j.oceaneng.2022.112165.

A. R. Gusman et al., “Source model for the tsunami inside palu bay following the 2018 palu earthquake, Indonesia,” Geophys. Res. Lett., vol. 46, no. 15, pp. 8721–8730, 2019, doi: 10.1029/2019GL082717.

X. Wang, “COMCOT User Manual Ver. 1.7,” Cornell Univ., vol. 6, pp. 1–59, 2009.

T. R. Wu, P. F. Chen, W. T. Tsai, and G. Y. Chen, “Numerical study on tsunamis excited by 2006 Pingtung earthquake doublet,” Terr. Atmos. Ocean. Sci., vol. 19, no. 6, pp. 705–715, 2008, doi: 10.3319/TAO.2008.19.6.705(PT).

R. Sabeti and M. Heidarzadeh, “Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: applications to 1994 Skagway and 1998 Papua New Guinea tsunamis,” Nat. Hazards, vol. 103, no. 1, pp. 1591–1611, 2020, doi: 10.1007/s11069-020-04050-4.

D. R. Tappin and S. T. Grilli, “The Continuing Underestimated Tsunami Hazard from Submarine Landslides,” no. July 1998, pp. 343–350, 2021, doi: 10.1007/978-3-030-60196-6_24.

I. R. Pranantyo, M. Heidarzadeh, and P. R. Cummins, “Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data,” Geosci. Lett., vol. 8, no. 1, 2021, doi: 10.1186/s40562-021-00190-y.

Published
2024-03-01
How to Cite
[1]
Z. Qonita, S. Karima, A. Rusdiansyah, and R. Riyandari, “NUMERICAL MODELING OF THE 1998 PAPUA NEW GUINEA TSUNAMI USING THE COMCOT”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0349-0360, Mar. 2024.