• Teguh Herlambang Information System Department, FEBTD, University of Nahdlatul Ulama Surabaya, Indonesia
  • Hendro Nurhadi Department of Industrial Mechanical Engineering, Institute of Teknologi Sepuluh Nopember, Indonesia
  • Fajar Annas Susanto Information System Department, FEBTD, University of Nahdlatul Ulama Surabaya, Indonesia
  • Berny Pebo Tomasouw Mathemathics Department, Pattimura University, Indonesia
Keywords: middle finger, H-infinity, EnKF, Estimation, Kalman Filter


Upper extremity paresis is a condition in which a person experiences muscle weakness in one or both hands. This condition can cause impairment in motor function, hinder daily activities, and affect the life quality of the sufferer. In some cases, paresis can result from nerve injury, neurological disease, or an accident.  To help improve the life quality of the sufferer experiencing upper extremity paresis, the development of the Finger Prosthetic Arm Robot, an assistive robotic hand designed to provide assistance in the movement of the finger experiencing paresis, is required. This technology aims to restore its functional ability and the independence of the patient in performing daily activities, such as picking up objects, grasping, and performing other precise movements. The main purpose of this paper, the researcher compared two methods to estimate the motion of the middle finger robot, that is, the H-infinity method and the Ensemble Kalman Filter (EnKF) method.  The simulation results show that both methods had almost the same accuracy, and the simulation by generating 800 ensembles was more accurate than that by generating 400 ensembles with an accuracy difference of about 10% above the accuracy rate of 98%.


Download data is not yet available.


T. Herlambang, H. Nurhadi, A. Muhith, D. Rahmalia, and B. P. Tomasouw, “ESTIMATION OF THIRD FINGER MOTION USING ENSEMBLE KALMAN FILTER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 1079–1086, Sep. 2022, doi: 10.30598/barekengvol16iss3pp1079-1086.

K. Anam, A. R. Chaidir, and F. Isman, “Hand motion strength forecasting using Extreme Learning Machine for post-stroke rehabilitation,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 2, pp. 70–76, Apr. 2021, doi: 10.14710/jtsiskom.2021.13844.

T. Herlambang, H. Nurhadi, A. Muhith, A. Suryowinoto, and K. Oktafianto, “Estimation of Forefinger Motion with Multi-DOF Using Advanced Kalman Filter,” 2023.

I. Sugiarto, “Pemodelan dan Simulasi Dinamika Lengan Robot 3-DOF Menggunakan Perangkat Lunak Open Source,” Jurnal Teknik Elektro, vol. 8, no. 2, Apr. 2010, doi: 10.9744/jte.8.2.57-63.

O. Sri Purwanti and A. Maliya, “Rehabilitasi Pasien Pasca Stroke,” Berita Ilmu Keperawatan, vol. 1, pp. 43–46, 2008.

E. S. Ningrum, B. Sumantri, A. Wijayanto, C. Yanuar, and Moch. I. Riansyah, “OPTIMASI PERGERAKAN ROBOT PLANAR 3 SENDI PADA ROBOT PENGGENGGAM MENGGUNAKAN METODE PEMROGRAMAN GENETIKA,” Jurnal Inovtek, vol. 3, pp. 20–25, 2013.

P. E. Ávila-Hernández and F. Cuenca-Jiménez, “Design and synthesis of a 2 DOF 9-bar spatial mechanism for a prosthetic thumb,” Mech Mach Theory, vol. 121, pp. 697–717, Mar. 2018, doi: 10.1016/j.mechmachtheory.2017.12.001.

H. Nurhadi, T. Herlambang, and D. Adzkiya, “Position estimation of Touristant ASV using ensemble Kalman filter,” in INNOVATIVE SCIENCE AND TECHNOLOGY IN MECHANICAL ENGINEERING FOR INDUSTRY 4.0: Proceedings of the 4th International Conference on Mechanical Engineering (ICOME2019), 2019, p. 060006. doi: 10.1063/1.5138367.

T. Herlambang, D. Rahmalia, A. Suryowinoto, F. Yudianto, F. A. Susanto, and M. Y. Anshori, “H-infinity for autonomous surface vehicle position estimation,” J Phys Conf Ser, vol. 2157, no. 1, p. 012022, Jan. 2022, doi: 10.1088/1742-6596/2157/1/012022.

T. Herlambang, F. A. Susanto, D. Adzkiya, A. Suryowinoto, and K. Oktafianto, “Design of Navigation and Guidance Control System of Mobile Robot with Position Estimation Using Ensemble Kalman Filter (EnKF) and Square Root Ensemble Kalman Filter (SR-EnKF),” 2022.

Subchan, T. Herlambang, and H. Nurhadi, “UNUSAITS AUV Navigation and Guidance System with Nonlinear Modeling Motion using Ensemble Kalman Filter,” in 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), IEEE, Oct. 2019, pp. 1–4. doi: 10.1109/ICAMIMIA47173.2019.9223388.

T. Herlambang, A. Muhith, D. Rahmalia, and H. Nurhadi, “Motion Optimization using Modified Kalman Filter for Invers-Kinematics based Multi DOF Arm Robot,” International Journal of Control and Automation, vol. 13, no. 2s, pp. 64–71, 2020.

A. Muhith, T. Herlambang, D. Rahmalia, Irhamah, and M. Y. Anshori, “Estimation of fresh frozen plasma blood in PMI Gresik using ensemble and extended Kalman filter,” in The 1st International Conference on Neuroscience and Learning Technology (ICONSATIN 2021), Sep. 2021. doi: 10.1063/5.0112684.

T. Herlambang, A. Muhith, Irhamah, M. Y. Anshori, D. Rahmalia, and D. F. Karya, “Implementation of H-infinity and ensemble Kalman filter for whole blood (WB) estimation in PMI Bojonegoro,” in Proceedings of the 6th National Conference on Mathematics and Mathematics Education, 2022. doi: 10.1063/5.0096121.

M. Y. Anshori, T. Herlambang, P. Katias, F. A. Susanto, and R. R. Rasyid, “Profitability estimation of XYZ company using H-infinity and Ensemble Kalman Filter,” in The 5th International Conference of Combinatorics, Graph Theory, and Network Topology (ICCGANT 2021), IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1742-6596/2157/1/012027.

How to Cite
T. Herlambang, H. Nurhadi, F. Susanto, and B. Tomasouw, “COMPARISON OF H-INFINITY AND ENSEMBLE KALMAN FILTER FOR ESTIMATING MOTION OF MIDDLE FINGER”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2433-2442, Dec. 2023.