THE LEVI DECOMPOSITION OF THE LIE ALGEBRA M_2 (R)⋊gl_2 (R)

  • Edi Kurniadi Department of Mathematics, FMIPA, Universitas Padjadjaran, Indonesia
  • Henti Henti Department of Mathematics, FMIPA, Universitas Padjadjaran, Indonesia
  • Ema Carnia Department of Mathematics, FMIPA, Universitas Padjadjaran, Indonesia
Keywords: Frobenius Lie algebra, Levi Decomposition, Lie algebra, Radical

Abstract

The idea of the Lie algebra  is studied in this research. The decomposition between Levi sub-algebra and the radical can be used to define the finite dimensional Lie algebra. The Levi decomposition is the name for this type of decomposition. The goal of this study is to obtain a Levi decomposition of the Lie algebra  of dimension 8. We compute its Levi sub-algebra and the radical of Lie algebra  with respect to its basis to achieve this goal. We use literature studies on the Levi decomposition and Lie algebra in Dagli result to produce the radical and Levi sub-algebra. It has been shown that  can be decomposed in the terms of the Levi sub-algebra and its radical. In this resulst, it has been given by direct computations and we obtained that the explicit formula of Levi decomposition of  the affine Lie algebra  whose basis is  is written by  with is  is the Levi sub-algebra of  .

Downloads

Download data is not yet available.

References

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, vol. 9. New York, NY: Springer New York, 1972. doi: 10.1007/978-1-4612-6398-2.

Mehmet Dagli, “Levi Decomposition of Lie Algebras; Algorithms for its Computation,”master thesis, Iowa State University , Ames, Iowa, 2004.

J. Hilgert and K.-H. Neeb, Structure and Geometry of Lie Groups. New York, NY: Springer New York, 2012. doi: 10.1007/978-0-387-84794-8.

M. Rais, “La représentation coadjointe du groupe affine,” Annales de l’institut Fourier, vol. 28, no. 1, pp. 207–237, 1978, doi: 10.5802/aif.686.

M. A. Alvarez, M. C. Rodríguez-Vallarte, and G. Salgado, “Contact and Frobenius solvable Lie algebras with abelian nilradical,” Commun Algebra, vol. 46, no. 10, pp. 4344–4354, Oct. 2018, doi: 10.1080/00927872.2018.1439048.

M. A. Alvarez, M. Rodríguez-Vallarte, and G. Salgado, “Contact nilpotent Lie algebras,” Proceedings of the American Mathematical Society, vol. 145, no. 4, pp. 1467–1474, Oct. 2016, doi: 10.1090/proc/13341.

J. R. Gómez, A. Jimenéz-Merchán, and Y. Khakimdjanov, “Low-dimensional filiform Lie algebras,” J Pure Appl Algebra, vol. 130, no. 2, pp. 133–158, Sep. 1998, doi: 10.1016/S0022-4049(97)00096-0.

I. V Mykytyuk and C. E. by B Vinberg, “Structure of the coadjoint orbits of Lie algebras,” Journal of Lie theory, vol. 22, pp.251-268, 2012.

H. Henti, E. Kurniadi, and E. Carnia, “Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R),” Al-Jabar : Jurnal Pendidikan Matematika, vol. 12, no. 1, pp. 59–69, Jun. 2021, doi: 10.24042/ajpm.v12i1.8485.

B. Csikós and L. Verhóczki, “Classification of Frobenius Lie algebras of dimension ≤6,” Publicationes Mathematicae Debrecen, vol. 70, no. 3–4, pp. 427–451, Apr. 2007, doi: 10.5486/PMD.2007.3556.

A. Diatta and B. Manga, “On Properties of Principal Elements of Frobenius Lie Algebras ,” Journal of Lie Theory, vol. 24, no. 3, pp. 849–864, 2014.

E. Kurniadi, E. Carnia, and A. K. Supriatna, “The construction of real Frobenius Lie algebras from non-commutative nilpotent Lie algebras of dimension,” J Phys Conf Ser, vol. 1722, no. 1, p. 012025, Jan. 2021, doi: 10.1088/1742-6596/1722/1/012025.

E. Kurniadi and H. Ishi, “Harmonic Analysis for 4-Dimensional Real Frobenius Lie Algebras,” 2019, pp. 95–109. doi: 10.1007/978-3-030-26562-5_4.

E. Kurniadi, “Dekomposisi dan Sifat Matriks Struktur Pada Aljabar Lie Frobenius Berdimensi 4,” Prosiding Seminar Nasional Hasil Riset dan Pengabdian (SNHRP)-5, Universitas PGRI Adi Buana, 2021.

E. Kurniadi, N. Gusriani, and B. Subartini, “A Left-Symmetric Structure on The Semi-Direct Sum Real Frobenius Lie Algebra of Dimension 8,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 2, pp. 267–280, Mar. 2022, doi: 10.18860/ca.v7i2.13462.

Published
2024-05-25
How to Cite
[1]
E. Kurniadi, H. Henti, and E. Carnia, “THE LEVI DECOMPOSITION OF THE LIE ALGEBRA M_2 (R)⋊gl_2 (R)”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 0717-0724, May 2024.