LOGISTIC AND PROBIT REGRESSION MODELING TO PREDICT THE OPPORTUNITIES OF DIABETES IN PROSPECTIVE ATHLETES

  • Danang Ariyanto Department of Actuarial Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0002-7642-6775
  • A'yunin Sofro Department of Actuarial Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Indonesia
  • A’idah Nur Hanifah Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Indonesia
  • Junaidi Budi Prihanto Department of Sport Education, Faculty of Sport Science, Universitas Negeri Surabaya, Indonesia
  • Dimas Avian Maulana Department of Actuarial Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Indonesia
  • Riska Wahyu Romadhonia Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Indonesia
Keywords: Anthropometric, Athletic, Diabetes, Logistic Regression, Probit Regression, Socio-demographic

Abstract

Diabetes is among the most prevalent chronic diseases globally, posing significant health risks to individuals. The identification of individuals at risk of developing these conditions is of paramount importance, particularly in high-stress and physically demanding activities such as athletic training. To find out the chances of a prospective athlete suffering from diabetes or not, models for binary data can be used, including logistic regression and probit models. The data used is primary data from prospective athletes in East Java, including prospective athletes from the State University of Surabaya and East Java Koni Athletes. This study aimed to develop an early prediction model for diabetes in prospective athletic candidates using a bivariate logistic and probit regression approach while considering the influence of socio-demographic and anthropometric factors. To selecting the best model between logistic regression and probit regression using Akaike’s Information Criterion (AIC) value, the smaller the AIC value gets means that the model is closer to the actual value or being the best model. Logistic regression has a smaller AIC value (129,85) than probit regression, this means that the logistic model is the best model. In this paper, an attempt is made to explore the use of logistic and probit regression to determine the factors which significantly influence the diabetes disease and we got that the logistic model as the best model because it has a smaller AIC value than the probit model. Based on the result of analysis and discussion, it can be concluded that there are two factors called mother’s job and finance which are influenced to the response variable, diabetes disease at significance level of 5%.

Downloads

Download data is not yet available.

References

N. Chaudhary and N. Tyagi, “Diabetes mellitus: An Overview,” Int. J. Res. Dev. Pharm. Life Sci., vol. 7, no. 4, pp. 3030–3033, 2018.

D. A. Naqvi, D. A. K. Shadani, and D. S. Gupta, “Study of Serum Magnesium Level in Type 2 Diabetes Mellitus in Relation to Its Microvascular Complication,” Int. J. Sci. Healthc. Res., vol. 7, no. 2, pp. 108–117, 2022.

L. Mbuagbaw, R. Aronson, A. Walker, R. E. Brown, and N. Orzech, “The LMC Skills, Confidence & Preparedness Index (SCPI): development and evaluation of a novel tool for assessing self-management in patients with diabetes,” Health Qual. Life Outcomes, vol. 15, no. 1, pp. 1–9, 2017.

C. C. Jimenez, “Diabetes and exercise: the role of the athletic trainer,” J. Athl. Train., vol. 32, no. 4, p. 339, 1997.

D. I. Ruspriyanty and A. Sofro, “Analysis of Hypertension Disease using Logistic and Probit Regression,” J. Phys. Conf. Ser., vol. 1108, no. 1, 2018.

D. K. Mulyantoro, "Tinggi badan usia dewasa dan risiko penyakit diabetes melitus,” Ph.D. dissertation, Universitas Indonesia, Jakarta, Indonesia, 2013.

L. Amalia, Y. Mokodompis, and G. A. Ismail, “Hubungan Overweight Dengan Kejadian Diabetes Mellitus Tipe 2 Di Wilayah Kerja Puskesmas Bulango Utara,” Jambura J. Epidemiol., vol. 1, no. 1, pp. 11–19, 2022.

I. Saputra, F. Esfandiari, E. Marhayuni, and M. Nur, “Indeks massa tubuh dengan kadar Hb-A1c pada pasien diabetes melitus tipe II,” J. Ilm. Kesehat. Sandi Husada, vol. 9, no. 2, pp. 597–603, 2020.

K. A. Putri, D. N. Kahanjak, and R. A. A. H. S. Putra, “Literature Review: Hubungan Lingkar Pinggang Dengan Kadar Gula Darah Pada Dewasa Muda,” J. Kedokt. Univ. Palangka Raya, vol. 10, no. 1, pp. 18–23, 2022.

K. Komariah and S. Rahayu, “Hubungan usia, jenis kelamin dan indeks massa tubuh dengan kadar gula darah puasa pada pasien diabetes melitus tipe 2 di klinik pratama rawat jalan proklamasi, Depok, Jawa Barat,” J. Kesehat. Kusuma Husada, pp. 41–50, 2020.

R. Arania, T. Triwahyuni, T. Prasetya, and S. D. Cahyani, “Hubungan Antara Pekerjaan Dan Aktivitas Fisik Dengan Kejadian Diabetes Mellitus Di Klinik Mardi Waluyo Kabupaten Lampung Tengah,” J. Med. Malahayati, vol. 5, no. 3, pp. 163–169, 2021.

W. P. Aji, “Hubungan status sosial ekonomi dengan kejadian diabetes melitus tipe 2 diwilayah kerja puskesmas patrang.” Ph.D Ph.D. dissertation, Universitas dr. SOEBANDI, Jember, Indonesia, 2022.

M. Fathurahman, M. N. Hayati, and N. A. Rizki, “Pemodelan Indeks Pembangunan Kesehatan Masyarakat Kabupaten/Kota di Pulau Kalimantan dengan Regresi Spasial,” Pros. SNMSA, pp. 183–191, 2019.

A. Agresti, Categorical data analysis, vol. 792. John Wiley & Sons, 2012.

Z. A. A. Al-Bairmani and A. A. Ismael, “Using Logistic Regression Model to Study the Most Important Factors Which Affects Diabetes for the Elderly in the City of Hilla / 2019,” J. Phys. Conf. Ser., vol. 1818, no. 1, pp. 0–10, 2021.

D. R. S. Saputro and P. Widyaningsih, “Algoritme Pendugaan Parameter Model Regresi Logistik Biner (RLB) dengan Maksimum Likelihood dan Broyden-Fletcher-Goldfarb-Shanno (BFGS),” in Seminar Nasional Matematika Dan Pendidikan Matematika UNY, pp. 97–104, 2016.

S. Yuhadisi and S. Suliadi, “Penerapan Metode Modifikasi Hosmer-Lemeshow Test pada Model Regresi Logistik Data Penderita Penyakit Hipertensi,” Pros. Stat., vol. 7, no. 1, pp. 50–55, 2021.

Y. Tampil, H. Komaliq, and Y. Langi, “Analisis Regresi Logistik Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado,” d’CARTESIAN J. Mat. dan Apl., vol. 6, no. 2, pp. 56–62, 2017.

W. Alwi, E. Ermawati, and S. Husain, “Analisis Regresi Logistik Biner Untuk Memprediksi Kepuasan Pengunjung Pada Rumah Sakit Umum Daerah Majene,” J. Mat. dan Stat. serta Apl., vol. 6, no. 1, p. 20, 2018.

E. Wulandari, “Model regresi probit untuk mengetahui faktor-faktor yang mempengaruhi jumlah penderita diare di Jawa Timur,” MATHunesa J. Ilm. Mat., vol. 1, no. 1, 2013.

P. McCullagh, Generalized linear models. Routledge, 2019.

A. E. Review and L. Document, “Analyzing the Determinants of Project Success : A Probit Regression Approach 2 Analyzing the Determinants of Project Success : A Probit Regression Approach,” vol. 1990, pp. 1–5, 2016, [Online]. Tersedia: https://www.adb.org/sites/default/files/linked-documents/4-Analyzing-the-Determinants-of-Project-Success-A-Probit-Regression-Approach.pdf [Diakses: 2 Agustus 2023].

P. L. Ayunda, “Analisis Perbandingan Regresi Logistik Model Logit dan Probit untuk Menentukan Variabel yang Mempengaruhi Fluktuasi Harga Beras pada Daerah Surplus dan Defisit,” Institut Teknologi Sepuluh November, 2018.

M. Zaidi and A. Amirat, “Forecasting Stock Market Trends By Logistic Regression and Neural Networks Evidence From Ksa Stock Market,” Int. J. Econ. Commer. Manag. United Kingdom, vol. IV, no. 6, pp. 220–234, 2016.

A. Suwardi, “Modul LPM, Logit, dan Probit Model.” Fakultas Ekonomi. Universitas Indonesia. Depok, 2011.

M. Astsaqofi, “Analisis Regresi Probit dengan Efek Interaksi untuk Memodelkan Indeks Pembangunan Manusia di Indonesia,” Inst. Teknol. Sepuluh Nop., 2016.

N. A. Salsabila, S. Andriani, M. Mirisda, and D. A. Nohe, “Analisis Pengaruh Tingkat Partisipasi Angkatan Kerja Dan Indeks Pembangunan Manusia Terhadap Tingkat Pengangguran Terbuka Menggunakan Regresi Probit Dan Logit,” in Prosiding Seminar Nasional Matematika dan Statistika, 2022, vol. 2.

D. L. W. Putri, S. Mariani, and S. Sunarmi, “Peningkatan Ketepatan Klasifikasi Model Regresi Logistik Biner dengan Metode Bagging (Bootstrap Aggregating),” Indones. J. Math. Nat. Sci., vol. 44, no. 2, pp. 61–72, 2021.

S. B. Sari, N. Mukhtar, and A. Anisa, “Analisis faktor-faktor yang mempengaruhi keseringan mahasiswa unhas mengikuti program gumsb (gerakan unhas mengaji dan sholat berjamaah) dengan model regresi logistik,” J. Mat. Stat. dan Komputasi, vol. 15, no. 1, pp. 104–113, 2018.

D. W. Hosmer, S. Lemeshow, and E. Cook, “Applied logistic regression 2nd edition,” New York Jhon Wiley Sons Inc, 2000.

S. Konishi and G. Kitagawa, Information criteria and statistical modeling. Springer Science & Business Media, 2008.

H. de-G. Acquah, “Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of an asymmetric price relationship,” 2010.

Published
2024-07-31
How to Cite
[1]
D. Ariyanto, A. Sofro, A. Hanifah, J. Prihanto, D. Maulana, and R. Romadhonia, “LOGISTIC AND PROBIT REGRESSION MODELING TO PREDICT THE OPPORTUNITIES OF DIABETES IN PROSPECTIVE ATHLETES”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1391-1402, Jul. 2024.