FORECASTING THE NUMBER OF AIRPLANE PASSENGERS USING HOLT WINTER'S EXPONENTIAL SMOOTHING METHOD AND EXTREME LEARNING MACHINE METHOD

  • Rochdi Wasono Statistics Study Program, Faculty of Mathematics and Natural Sciences, Muhammadiyah University of Semarang, Indonesia
  • Yulia Fitri Statistics Study Program, Faculty of Mathematics and Natural Sciences, Muhammadiyah University of Semarang, Indonesia
  • M. Al Haris Statistics Study Program, Faculty of Mathematics and Natural Sciences, Muhammadiyah University of Semarang, Indonesia
Keywords: Extreme Learning Machine, Holt Winters Exponential Smoothing, Passengers, Forecasting

Abstract

Airplanes provide comfort and speed for their users, especially for those who have limited time. The number of passengers has continued to increase in the last few months at Ahmad Yani International Airport, so a forecast is needed in making decisions to predict the number of passengers in order to maximize existing performance. The data used is secondary data on the number of airplane passengers at Ahmad Yani International Airport from 2012 to 2022 obtained from PT Angkasa Pura 1 (Persero). The Holt Winters Exponential Smoothing method is used because it aligns with the data pattern that includes trends and seasonality in the research, and it has a low level of accuracy. In this study also used the Extreme Learning Machine (ELM) method, apart from being a relatively new method, it has a fast learning speed and has low accuracy. This study aims to predict the number of airplane passengers at Ahmad Yani International Airport in Semarang using the Holt Winters Exponential Smoothing and ELM methods. The results of the analysis show that the MAPE value in the Holt Winters Exponential Smoothing method is 8,18% and in the ELM method using 12 input neurons and 43 neurons in the hidden layer, a MAPE of 6,04% is obtained. so that the ELM method is the right method for predicting the number of airplane passengers at Ahmad Yani International Airport in Semarang.

Downloads

Download data is not yet available.

References

F. Lamusa, “Peramalan Jumlah Penumpang Pada PT.Angkasa Pura I (PERSERO) Kantor Cabang Bandar Udara Internasional Sultan Hasanuddin Makassar Dengan Menggunakan Metode Holt-Winters Exponential Smoothing,” UIN Alauddin Makassar, 2017.

M. T. Ikhsan, D. Rusadi, and M. Ghalih, “Analisis Pengaruh Jumlah Keberangkatan Penumpang di Bandara Pada Penerbangan Domestik dan Internasional di Indonesia,” J. Ris. Akunt. Politala, vol. 2, no. 1, pp. 8–15, 2017.

PT Angkasa Pura I (Persero). "Data Bulanan Jumlah Penumpang Pesawat Bandara Internasional Ahmad Yani Tahun Januari 2012 sampai Desember 202" PPID PT Angkasa Pura I (Persero). Diakses tanggal 29 Maret 2023, dari https://ppid.ap1.co.id/

M. Mohan, P. C. Kishore Raja, P. Velmurugan, and A. Kulothungan, “Holt-Winters Algorithm to Predict the Stock Value Using Recurrent Neural Network,” Intell. Autom. Soft Comput., vol. 35, no. 1, pp. 1151–1163, 2023, doi: 10.32604/iasc.2023.026255.

I. K. A. G. Wiguna, N. L. P. A. C. Utami, W. G. S. Parwita, I. P. A. E. D. Udayana, and I. G. I. Sudipa, “Rainfall Forecasting Using the Holt-Winters Exponential Smoothing Method,” J. Info Sains Inform. dan Sains, vol. 13, no. 01, pp. 15–23, 2023.

Z. M. Yaseen, S. O. Sulaiman, R. C. Deo, and K. W. Chau, “An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction,” J. Hydrol., vol. 569, no. November 2018, pp. 387–408, 2019, doi: 10.1016/j.jhydrol.2018.11.069.

A. Giusti, A. W. Widodo, and S. Adinugroho, “Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine ( ELM ) di Kober Mie Setan Cabang Soekarno Hatta,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 8, pp. 2972–2978, 2018.

A. Nurdini and A. Lazuardy, “Analysis of Demand Forecasting for Tempeh Products At Indonesian Tempeh Houses Using the Holt-Winters Additive Method Approach,” Int. J. Sci. Technol., vol. 2, no. 1, pp. 59–64, 2023, doi: 10.56127/ijst.v2i1.854.

N. A. Izati, B. Warsito, and T. Widiharih, “Prediksi Harga Emas Menggunakan Feed Forward Neural Network Dengan Metode Extreme Learning Machine,” J. Gaussian, vol. 8, no. 2, pp. 171–183, 2019, doi: 10.14710/j.gauss.v8i2.26641.

T. Widiyaningtyas, I. Ari Elbaith Zaeni, and T. Ismi Zahrani, “Food Commodity Price Prediction in East Java Using Extreme Learning Machine (ELM) Method,” Proc. - 2020 Int. Semin. Appl. Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit. Disruption, iSemantic 2020, pp. 93–97, 2020, doi: 10.1109/iSemantic50169.2020.9234201.

T. Safitri, N. Dwidayati, and K. Kunci, “Perbandingan Peramalan menggunakan Metode Exponential Smoothing Holt Winters dan Arima,” Unnes J. Math., vol. 6, no. 1, pp. 48–58, 2017, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

C. Liu, B. Sun, C. Zhang, and F. Li, “EnerarXiv-preprint EnerarXiv-preprint,” pp. 1–27.

N. Nurhamidah, N. Nusyirwan, and A. Faisol, “Forecasting Seasonal Time Series Data Using the Holt-Winters Exponential Smoothing Method of Additive Models,” J. Mat. Integr., vol. 16, no. 2, p. 151, 2020, doi: 10.24198/jmi.v16.n2.29293.151-157.

G. Bin Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” IEEE Int. Conf. Neural Networks - Conf. Proc., vol. 2, pp. 985–990, 2004, doi: 10.1109/IJCNN.2004.1380068.

F. N. Cholisa, “Prediksi Penjualan Minuman Kopi Menggunakan Metode Extreme Learning Machine (ELM),” Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2021.

I. Abadi, A. Soeprijanto, and A. Musyafa’, “Extreme learning machine approach to estimate hourly solar radiation on horizontal surface (PV) in Surabaya -East java,” 2014 1st Int. Conf. Inf. Technol. Comput. Electr. Eng. Green Technol. Its Appl. a Better Futur. ICITACEE 2014 - Proc., no. September, pp. 372–376, 2015, doi: 10.1109/ICITACEE.2014.7065774.

Published
2024-03-01
How to Cite
[1]
R. Wasono, Y. Fitri, and M. Haris, “FORECASTING THE NUMBER OF AIRPLANE PASSENGERS USING HOLT WINTER’S EXPONENTIAL SMOOTHING METHOD AND EXTREME LEARNING MACHINE METHOD”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0427-0436, Mar. 2024.