ANALYSIS OF PRIORITY AREAS FOR HANDLING STUNTING CASES IN SIGI REGENCY USING THE TOPSIS METHOD BASED ON WEB DASHBOARD

  • Zainal Mu'arif Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Indonesia https://orcid.org/0009-0008-9260-4720
  • Dini Aprilia Afriza Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Indonesia
  • Firda Aulia Department of Public Health, Faculty of Public Health, Universitas Tadulako, Indonesia
  • Melsy Patricia Anggelina E Department of Informatics Engineering, Faculty of Engineering, Universitas Tadulako, Indonesia
  • Nurul Fiskia Gamayanti Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Indonesia
Keywords: Sigi Regency, Stunting, TOPSIS, Web Dashboard System

Abstract

Stunting is a condition of growth failure in children, where a toddler has a length or height below the average. Stunting is a problem for children because it has the potential to slow down brain development with prolonged effects. Central Sulawesi Province is one of the provinces with the highest stunting prevalence rate and the area with the highest stunting rate is in Sigi Regency at 36.8%. Stunting cases are an important concern for the Sigi Regency government, especially the Health Office and Community Health Centers. To identify and determine areas that are prioritized for handling stunting cases, seven indicators are used, including the number of stunting cases, number of villages covered, number of health workers, number of integrated service posts, number of exclusive breastfeeding, percentage of clean drinking water, and percentage of proper sanitation. To support in reducing the percentage of stunting in Sigi Regency, research was conducted and a web dashboard system application was made to support priority area selection decisions using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, a best alternative method that has the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The results obtained in this study are the areas that are prioritized for handling stunting cases in Sigi Regency is the Sigi Biromaru area with a total of 495 stunting cases, the number of coverage villages is 18, the number of integrated service posts is 53, the number of health workers is 96, the number of exclusive breastfeeding is 35, the percentage of proper drinking water is 44%, and the percentage of proper sanitation is 84.00% with the highest preference value through the TOPSIS method analysis of 0.660.

Downloads

Download data is not yet available.

References

A. Rahayu, F. Yulidasari, A. Octania, L. Anggraini, Study Guide - Stunting dan Upaya Pencegahannya. Yogyakarta: CV Mine, 2018.

N. Ariati, A. Purnamawati, N. Suarni, I. Padmiari, P. Sugiani, Description of nutrional status and the incidince of stunting children in early childhood education programs in Bali-Indonesia. Bali Medical Journal, vol. 7, no. 3, pp. 723-726, 2018.

World Health Organization, InterpretationGuide Nutrion Landscape Information System (NLIS). Switzerland: WHO Press, 2018.

Kementerian Kesehatan Republik Indonesia, Buku Saku Hasil Studi Gizi Indonesia (SSGI). Jakarta: SSGI Kemenkes RI, 2022.

A. Zainal, Sistem Penunjang Keputusan Penentuan Prioritas Lokasi Penanganan Kemacetan Lalu Lintas Menggunakan Metode Perankingan TOPSIS (Studi Pada Kepolisian Wilayah Kepanjen). Program Studi Teknik Informatika Malang: Sekolah Tinggi Informatika & Komputer Indonesia (STIKI), 2016.

X. Qiang, Z. Biao, Z. Jing, L. Guang, Improved TOPSIS Model and its Application in the Evaluation of NCAA Basketball Coaches. China: Modern Applied Science 9,2, 2015.

S. Arfian & Indriyati, Sistem Pendukung Keputusan untuk Penentuan Minat Peserta Didik di SMA Menggunakan Metode TOPSIS. Jurnal Masyarakat Informatika, vol. 1, no. 6, pp. 11-17, 2015.

Z. Xiaoqian, W. Fei, W. Haiyan, L. Changzhi, T. Run, S. Xiaolei, L. Jianping, TOPSIS method for quality credit evaluation: A case of air-conditioning market in China. Journal of Computational Science, vol. 1, no. 5, pp. 99-105, 2014.

R. Miftakhur, S. Regina, Kejadian Stunting di Tinjau dari Pola Makan dan Tinggi Badan Orang Tua Anak Usia 12-36 Bulan di Puskesmas Kinovaro Kabupaten Sigi Provinsi Sulawesi Tengah. Journal for Quality in Women's Health, vol. 3, no. 2, pp. 207-215, 2020.

Priyono & Nuzuluarini, Sistem Pendukung Keputusan Metode TOPSIS Untuk Diagnosa Penyakit Demam Berdarah. Jurnal Inti Nusa Mandiri, vol. 15, no. 1, pp. 51-58, 2020.

Khoirudin, Sistem Pendukung Keputusan Penilaian Kinerja Dosen dengan Menggunakan Metode Additive Ratio Assesment (ARAS). Yogyakarta: Andi, 2018.

M. Safii & S. Ningsih, Rekomendasi Pemberian Beasiswa Bantuan Siswa Miskin Menggunakan Algoritma TOPSIS. Jurnal Sains Komputer dan Informatika (J-Sakti), vol. 1, no. 2, pp. 243-254, 2017.

L. Al Bahra, Analisis dan Desain Sistem Informasi. Yogyakarta: Graha Ilmu, 2015.

Y. Zai, Mesran, B. Nadeak, I. Saputra, Penerapan Technnique for Orders Preference by Similarity to Ideal Solution (TOPSIS) untuk Keputusan Pemberian Kredit pada Calon Nasabah. Jurnal Media Informatika Budidarma, vol. 1, no. 1, pp. 1-7, 2017.

S. Wahyuni, D. Niska, E. Hariyanto, Sistem Pendukung Keputusan Penentuan Siswa Berprestasi Menggunakan Metode TOPSIS pada SMA Sinar Husni. Jurnal Teknik dan Informatika, vol. 6, no. 1, pp. 46 - 51, 2019.

Published
2024-07-31
How to Cite
[1]
Z. Mu’arif, D. Afriza, F. Aulia, M. Anggelina E, and N. Gamayanti, “ANALYSIS OF PRIORITY AREAS FOR HANDLING STUNTING CASES IN SIGI REGENCY USING THE TOPSIS METHOD BASED ON WEB DASHBOARD”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1411-1422, Jul. 2024.