PREDICTION OF PROSPECTIVE NEW STUDENTS USING DECISION TREE, RANDOM FOREST, AND NAIVE BAYES
Abstract
Higher education positions new student enrollment as a strategic activity for private universities. The effectiveness of selecting prospective students with a high potential to register and be accepted is crucial. Therefore, this study was conducted to find a data classification model that can determine the potential acceptance of new students, allowing private universities to increase the number of students admitted. This research's data originated from the 2020 new student admissions at a prominent private university in Pontianak city. The three chosen classification methods are the decision tree, random forest, and naïve-bayes. Evaluation results indicate the accuracy rate of the decision tree is 59.1%, random forest at 59.2%, and naïve-Bayes at 58.1%. Despite similar accuracy rates, the random forest method slightly outperformed the others, suggesting it may be the most reliable for predicting student enrollment. Based on these models, the estimated potential of prospective students registering at the university ranges from 72% to 78% of the total student candidates. In conclusion, although the three models have almost similar accuracy rates, all show an optimistic estimate regarding the registration potential of prospective students. Thus, universities can use one or a combination of the three models to enhance efficiency in the student admission process.
Downloads
References
H. Noor Alifa and A. Sunarya Sulaeman, “Perguruan Tinggi Negeri BLU di Indonesia; Pengelolaan Anggaran, Karakteristik, dan Peningkatan Kinerja,” Jurnal Riset Akuntansi dan Keuangan, vol. 11, no. 2, pp. 401–4016, 2023.
R. Rismiatun, “Efektivitas Strategi Komunikasi Pemasaran Universitas Budi Luhur Dalam Penerimaan Mahasiswa Baru 2019,” KOMUNIKASI: Jurnal Komunikasi, vol. 11, no. 1, pp. 17–22, Feb. 2020.
Y. Manzali, Y. Akhiat, K. Abdoulaye Barry, E. Akachar, and M. El Far, “Prediction of Student Performance Using Random Forest Combined With Naïve Bayes,” Comput J, May 2024, doi: 10.1093/comjnl/bxae036.
J. JAYA PURNAMA, H. M. NAWAWI, S. ROSYIDA, RIDWANSYAH, and RISNANDAR, “Klasifikasi Mahasiswa Her Berbasis Algortima SVM Dan Decision Tree,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 6, 2020, doi: 10.25126/jtiik.202073080.
I. P. Pradnyana Iswara, F. Farhan, W. Kumara, and A. Afif Supianto, “Rekomendasi Pengambilan Mata Kuliah Pilihan Untuk Mahasiswa Sistem Informasi Menggunakan Algoritme Decision Tree,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 3, pp. 341–348, 2019, doi: 10.25126/jtiik.2019.6892.
NGATMARI, M. BISRI MUSTHAFA, C. RAHMAD, R. ANDRIE ASMARA, and F. AHUTOMO, “Pemanfaatan Data Pddikti Sebagai Pendukung Keputusan Manajemen Perguruan Tinggi,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 3, pp. 555–564, 2020, doi: 10.25126/jtiik.202072585.
R. AKBAR and S. UYUN, “Penentuan Bantuan Siswa Miskin Menggunakan Fuzzy Tsukamoto Dengan Perbandingan Rule Pakar Dan Decision Tree (Studi Kasus: SDN37 Bengkulu Selatan),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 4, pp. 651–662, 2021, doi: 10.25126/jtiik.202183307.
S. PRATAMA, ISWANDI, A. SEVTIAN, and T. PUTRI ANJANI, “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM,” Journal of Applied Informatics and Computing (JAIC), vol. 7, no. 1, p. 20, 2023, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
R. SUSETYOKO, W. YUWONO, E. PURWANTINI, and N. RAMADIJANTI, “Perbandingan Metode Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron Pada Klasifikasi Uang Kuliah Tunggal (UKT),” Jurnal Infomedia: Teknik Informatika, Multimedia & Jaringan, vol. 7, no. 1, pp. 8–16, 2022.
A. SAIFUDIN, “Metode Data Mining Untuk Seleksi Calon Mahasiswa Pada Penerimaan Mahasiswa Baru Di Universitas,” J Teknol, vol. 10, no. 1, pp. 25–36, 2018, doi: 10.24853/jurtek.10.1.25-36.
S. MUTROFIN, M. M. MACHFUD, D. HERNYKA SATYARENI, R. V. HARI GINARDI, and C. FATICHAH, “Komparasi Kinerja Algoritma C4.5, Gradient Boosting Trees, Random Forests, Dan Deep Learning Pada Kasus Educational Data Mining,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 807–814, 2020, doi: 10.25126/jtiik.2020732665.
A. RAHMAN, “Klasifikasi Performa Akademik Siswa Menggunakan Metode Decision Tree dan Naive Bayes,” Jurnal SAINTEKOM, vol. 13, no. 1, pp. 22–31, Mar. 2023, doi: 10.33020/saintekom.v13i1.349.
R. MOHAMAD ANDRI K. RASYID, A. RIYANTO, R. WIDYAWATI, and ISTININGSIH, “Implementasi Algoritma Naïve Bayes Untuk Sistem Rekomendasi Pemilihan Fakultas Di Universitas Amikom Yogyakarta,” JIKOM: Jurnal Informatika dan Komputer, vol. 13, no. 1, pp. 1–9, 2023.
H. LATIFAH and S. MUJIYONO, “Perbandingan Algoritma Naïve Bayes, K-NN, ID3 Dan SVM Dalam Menentukan Prediksi Kelulusan Siswa Di SMK Muhamadiah Majenang,” JAMASTIKA, vol. 2, no. 1, pp. 38–45, 2023.
AINURROHMAH and D. TRI WIYANTI, “Analisis Performa Algoritma Decision Tree, Naïve Bayes, K-nearest Neighbor Untuk Klasifikasi Zona Daerah Risiko COVID-19 Di Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 10, no. 1, pp. 115–122, 2023, doi: 10.25126/jtiik.2023105935.
D. KURNIADI, F. NURAENI, M. FIRMANSYAH, and P. Korespondensi, “Klasifikasi Masyarakat Penerima Bantuan Langsung Tunai Dana Desa Menggunakan Naïve Bayes Dan Smote,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, pp. 309–320, 2023, doi: 10.25126/jtiik.2023106453.
P. SEJATI, MUNAWAR, M. PILLIANG, and H. AKBAR, “Studi Komparasi Naive Bayes, K-nearest Neighbor, Dan Random Forest Untuk Prediksi Calon Mahasiswa Yang Diterima Atau Mundur,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 9, no. 7, pp. 1341–1348, 2022, doi: 10.25126/jtiik.202296737.
W. Chen, S. Zhang, R. Li, and H. Shahabi, “Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling,” Science of The Total Environment, vol. 644, pp. 1006–1018, Dec. 2018, doi: 10.1016/j.scitotenv.2018.06.389.
M. Guia, R. Silva, and J. Bernardino, “Comparison of Naïve Bayes, Support Vector Machine, Decision Trees and Random Forest on Sentiment Analysis,” in Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, SCITEPRESS - Science and Technology Publications, 2019, pp. 525–531. doi: 10.5220/0008364105250531.
K. Yadav and R. Thareja, “Comparing the Performance of Naive Bayes And Decision Tree Classification Using R,” International Journal of Intelligent Systems and Applications, vol. 11, no. 12, pp. 11–19, Dec. 2019, doi: 10.5815/ijisa.2019.12.02.
W. Chen et al., “Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods,” Science of The Total Environment, vol. 701, p. 134979, Jan. 2020, doi: 10.1016/j.scitotenv.2019.134979.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,” Procedia Comput Sci, vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.
H. Pramoedyo, D. Ariyanto, and N. N. Aini, “COMPARISON OF RANDOM FOREST AND NAÏVE BAYES METHODS FOR CLASSIFYING AND FORECASTING SOIL TEXTURE IN THE AREA AROUND DAS KALIKONTO, EAST JAVA,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 4, pp. 1411–1422, Dec. 2022, doi: 10.30598/barekengvol16iss4pp1411-1422.
F. Fauzi, W. Setiayani, T. W. Utami, E. Yulianto, and I. W. Harmoko, “COMPARISON OF RANDOM FOREST AND NAÏVE BAYES CLASSIFIER METHODS IN SENTIMENT ANALYSIS ON CLIMATE CHANGE ISSUE,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1439–1448, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1439-1448.
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett, vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010.
Copyright (c) 2024 Yulrio Brianorman, Sucipto Sucipto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.