IMPLEMENTATION OF VECTOR AUTOREGRESSIVE (VAR) AND VECTOR ERROR CORRECTION MODEL (VECM) METHOD IN PNEUMONIA PATIENTS WITH WEATHER ELEMENTS IN PANGKALPINANG CITY

  • Ririn Amelia Mathematics Department, Faculty of Engineering, Universitas Bangka Belitung, Indonesia https://orcid.org/0009-0008-2229-1546
  • Dhiti Wahyuni Mathematics Department, Faculty of Engineering, Universitas Bangka Belitung, Indonesia
  • Erna Julianti Nursing Department, Faculty of Engineering, Universitas Bangka Belitung, Indonesia
Keywords: Pneumonia, Weather, VAR, VECM

Abstract

The news about Covid-19 is no longer as scary as in previous years. As COVID-19 cases decrease, health protocols are becoming more relaxed, making it easier for the virus to spread. Besides COVID-19, ARI is one of Indonesia's leading causes of death for children under five. Around 20-40% of hospital admissions are children due to ARI, with around 1.6 million deaths due to pneumonia alone in children under five per year. Currently, ARI dominates the diseases most suffered by the people of Bangka Belitung. Based on this, using the VAR and VECM method to analyze pneumonia sufferers in toddlers regarding weather elements in the Pangkalpinang City. The VAR model has a simpler structure with a minimal number of variables where all the variables are endogenous, with the independent variable being the lag. Meanwhile, VECM can be used to model cointegrated and non-stationary time series data. The data used in this research is the number of monthly cases of toddlers suffering from pneumonia and data on climate conditions, namely rainfall, air temperature, air humidity and duration of sunlight during 2019-2021 in Pangkalpinang City. The results of the Granger Causality test show that the pneumonia variables regarding rainfall, temperature, duration of sunlight and humidity only have a one-way causality pattern. The VAR estimation results show that weather elements (rainfall, temperature and duration of sunlight) do not significantly affect pneumonia in the short term. Meanwhile, the VECM estimation results show that in the long-term pattern, humidity variables affect pneumonia. For this reason, it is recommended that the relevant agencies carry out outreach to the public, especially to pneumonia sufferers, to avoid damp weather. Because the lower the humidity value, the greater the potential for pneumonia in Pangkalpinang City, Bangka Belitung Islands Province.

Downloads

Download data is not yet available.

References

Aprionis and B. Agustian, “Tidak ada penambahan kasus COVID-19 di Bangka Belitung,” Antara Babel, Pangkalpinang, Feb. 02, 2023. Accessed: Nov. 03, 2023. [Online]. Available: https://babel.antaranews.com/berita/333264/tidak-ada-penambahan-kasus-covid-19-di-bangka-belitung

L. Gandhi, D. Maisnam, D. Rathore, P. Chauhan, A. Bonagiri, and M. Venkataramana, “Respiratory illness virus infections with special emphasis on COVID-19,” Eur J Med Res, vol. 27, no. 1, p. 236, Nov. 2022, doi: 10.1186/s40001-022-00874-x.

Y. Si et al., “Epidemiological surveillance of common respiratory viruses in patients with suspected COVID-19 in Southwest China,” BMC Infect Dis, vol. 20, no. 1, p. 688, Dec. 2020, doi: 10.1186/s12879-020-05392-x.

M. Chadha et al., “Human respiratory syncytial virus and influenza seasonality patterns—Early findings from the WHO global respiratory syncytial virus surveillance,” Influenza Other Respir Viruses, vol. 14, no. 6, pp. 638–646, Nov. 2020, doi: 10.1111/irv.12726.

Google, “COVID-19 Community Mobility Repo,” 2022.

Bangkapos.com, “Dominasi 10 Penyakit Teratas, Setiap Tahun 100 Ribuan Warga Bangka Belitung Terserang ISPA,” Bangkapos.com. Accessed: Jan. 31, 2023. [Online]. Available: https://www.msn.com/id-id/berita/other/dominasi-10-penyakit-teratas-setiap-tahun-100-ribuan-warga-bangka-belitung-terserang-ispa/ar-AA14157Q

X. Huang et al., “Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China,” International Journal of Infectious Diseases, vol. 98, pp. 21–32, Sep. 2020, doi: 10.1016/j.ijid.2020.06.051.

B. Hermawati, S. Indarjo, and D. M. Sukendra, “The Effect of Secondhand Smoke and Thirdhand Smoke Exposure at Home on Acute Respiratory Infections,” in Proceedings of the 5th International Conference on Physical Education, Sport, and Health (ACPES 2019), Paris, France: Atlantis Press, 2019. doi: 10.2991/acpes-19.2019.56.

Y. Harnani, R. Hamidy, S. Sukendi, and D. Afandi, “Pengaruh musim terhadap kejadian pneumonia pada balita di Kabupaten Pelalawan,” Dinamika Lingkungan Indonesia, vol. 9, no. 1, p. 39, Jan. 2022, doi: 10.31258/dli.9.1.p.39-44.

A. Zolanda, M. Raharjo, and O. Setiani, “Faktor Risiko Kejadian Infeksi Saluran Pernafasan Akut Pada Balita di Indonesia,” LINK, vol. 17, no. 1, pp. 73–80, May 2021, doi: 10.31983/link.v17i1.6828.

R. S. Gautam and J. Kanoujiya, “Multivariate Inflation Forecasting: A Case of Vector Auto Regressive (VAR) Model,” IConic Research and Engineering Journals, vol. 5, no. 12, pp. 11–14, Jun. 2022.

M. Lehna, F. Scheller, and H. Herwartz, “Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account,” Energy Econ, vol. 106, p. 105742, Feb. 2022, doi: 10.1016/j.eneco.2021.105742.

R. Amelia, D. Y. Dalimunthe, E. Kustiawan, and I. Sulistiana, “ARIMAX model for rainfall forecasting in Pangkalpinang, Indonesia,” IOP Conf Ser Earth Environ Sci, vol. 926, no. 1, p. 012034, Nov. 2021, doi: 10.1088/1755-1315/926/1/012034.

M. A. Castán-Lascorz, P. Jiménez-Herrera, A. Troncoso, and G. Asencio-Cortés, “A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting,” Inf Sci (N Y), vol. 586, pp. 611–627, Mar. 2022, doi: 10.1016/j.ins.2021.12.001.

R. Amelia, E. Kustiawan, I. Sulistiana, and D. Y. Dalimunthe, “Forecasting Rainfall in Pangkalpinang City Using Seasonal Autoregressive Integrated Moving Average with Exogenous (SARIMAX),” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 1, pp. 137–146, Mar. 2022, doi: 10.30598/barekengvol16iss1pp137-146.

R. Amelia, Guskarnali, R. G. Mahardika, C. R. Niani, and N. Lewaherilla, “Predicting particulate matter PM2.5 using the exponential smoothing and Seasonal ARIMA with R studio,” IOP Conf Ser Earth Environ Sci, vol. 1108, no. 1, p. 012079, Nov. 2022, doi: 10.1088/1755-1315/1108/1/012079.

R. Zhang, P. Zhou, and J. Qiao, “Anomaly Detection of Nonstationary Long-Memory Processes Based on Fractional Cointegration Vector Autoregression,” IEEE Trans Reliab, vol. 72, no. 4, pp. 1383–1394, Dec. 2023, doi: 10.1109/TR.2023.3314429.

G. Osei, “Utilizing Google Trends Data For Effective Modeling Of Covid-19 Outcomes: A Vector Auto Regression (VAR) Approach.”

F. F. Roman and Kartiko, “Penerapan Kausalitas Granger dan Kointegrasi Johansen Trace Statistic Test Untuk Indeks Pembangunan Manusia Terhadap Pertumbuhan Ekonomi, Inflasi dan Kemiskinan di Nusa Tenggara Timur,” Jurnal Statistika Industri dan Komputasi, vol. 5, no. 2, pp. 73–83, 2020.

Q. Wang, Y. Zhou, | Xiaofei Chen, and C. X. Chen, “A Vector Autoregression Prediction Model for COVID-19 Outbreak.” [Online]. Available: https://covidtracking.com/data/download

T. Britt, J. Nusbaum, A. Savinkina, and A. Shemyakin, “Short-term forecast of U.S. COVID mortality using excess deaths and vector autoregression,” Model Assisted Statistics and Applications, vol. 18, no. 1, pp. 13–31, Mar. 2023, doi: 10.3233/MAS-221392.

F. Bianchi, G. Bianchi, and D. Song, “The long-term impact of the COVID-19 unemployment shock on life expectancy and mortality rates,” J Econ Dyn Control, vol. 146, p. 104581, Jan. 2023, doi: 10.1016/j.jedc.2022.104581.

P. S. Hou, L. M. Fadzil, S. Manickam, and M. A. Al-Shareeda, “Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia,” Sustainability, vol. 15, no. 4, p. 3675, Feb. 2023, doi: 10.3390/su15043675.

D. Wahyuni, Z. Oktriani, T. Casella, and R. Amelia, “Metode Vector Autoregression (VAR) dalam Menganalisis Pengaruh Indeks Pembangunan Manusia (IPM) Terhadap Pertumbuhan Ekonomi di Provinsi Kepulauan Bangka Belitung,” in Proceedings of National Colloquium Research and Community Service, Dec. 2022.

M. Saiymova, M. Troyanskaya, K. Shalgimbayeva, Z. Babazhanova, and R. Jumabekova, “The Vector Auto Regression Analysis of the Link between Renewable Energy Consumption and Economic Development for Turkey and Kazakhstan,” International Journal of Energy Economics and Policy, vol. 13, no. 2, pp. 309–315, Mar. 2023, doi: 10.32479/ijeep.13998.

L. Loves, M. Usman, Warsono, Widiarti, and E. Russel, “Modeling Multivariate Time Series by Vector Error Correction Models (VECM) (Study: PT Kalbe Farma Tbk. and PT Kimia Farma (Persero) Tbk),” J Phys Conf Ser, vol. 1751, no. 1, p. 012013, Jan. 2021, doi: 10.1088/1742-6596/1751/1/012013.

D. M. H. Batubara and I. A. N. Saskara, “Analisis Hubungan Ekspor, Impor, PDB, dan Utang Luar Negeri Indonesia Periode 1970-2013,” Jurnal Ekonomi Kuantitatif Terapan , vol. 8, no. 1, pp. 46–55, Feb. 2015.

Published
2024-07-31
How to Cite
[1]
R. Amelia, D. Wahyuni, and E. Julianti, “IMPLEMENTATION OF VECTOR AUTOREGRESSIVE (VAR) AND VECTOR ERROR CORRECTION MODEL (VECM) METHOD IN PNEUMONIA PATIENTS WITH WEATHER ELEMENTS IN PANGKALPINANG CITY”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1447-1458, Jul. 2024.