CONSTRUCT THE TRIPLE ZERO GRAPH OF RING Z_n USING PYTHON

  • Putri Wulandari Department of Mathematics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Indonesia
  • Vika Yugi Kurniawan Department of Mathematics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Indonesia
  • Nughthoh Arfawi Kurdhi Department of Mathematics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Indonesia http://orcid.org/0000-0001-9274-1807
Keywords: Triple Zero Graph, Python Algorithm

Abstract

Let  be a commutative ring with nonzero identity and  there exists  such that , , ,  denotes the set of all triple zero elements of . The triple zero graph of , denoted by , is an undirected graph with vertex set  where two distinct vertices  and  are adjacent if and only if , and there exists a nonzero element  of  such that , , and . Python is a programming language with simple and easy-to-learn code that can be used to solve problems in algebra and graphs. In this paper, we construct the triple zero graph of ring  using Python. Based on the output of the program, several properties of  are obtained, such as if  and , then  is a planar graph, if  with  is prime numbers, then  is a complete graph , and if  with  is prime numbers and , then  is a connected graph.

Downloads

Download data is not yet available.

References

G. Chartrand, L. Lesniak, and P. Zhang, Graphs & digraphs, 6th ed. New York: CRC Pers Taylor and Francis Group, 2016. doi: 10.1201/b19731.

J. R. Durbin, Modern Algebra: An Introduction, 6th ed. New York: John Wiley and Sons, 2015.

I. Beck, “Coloring of Commutative,” vol. 226, no. 1, pp. 208–226, 1988.

D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” J. Algebr., vol. 217, no. 2, pp. 434–447, 1999, doi: 10.1006/jabr.1998.7840.s

A. Cherrabi, H. Essannouni, E. Jabbouri, and A. Ouadfel, “On a new extension of the zero-divisor graph (II),” Beitrage zur Algebr. und Geom., vol. 62, no. 4, pp. 945–953, 2021, doi: 10.1007/s13366-020-00559-8.

S. Redmond and S. Szabo, “When metric and upper dimensions differ in zero divisor graphs of commutative rings,” Discret. Math. Lett., vol. 5, pp. 34–40, 2021, doi: 10.47443/dml.2021.0005.

A. M. Alanazi, M. Nazim, and N. Ur Rehman, “Planar, Outerplanar, and Toroidal Graphs of the Generalized Zero-Divisor Graph of Commutative Rings,” J. Math., vol. 2021, 2021, doi: 10.1155/2021/4828579.

H. Mariiaa, V. Y. Kurniawan, and Sutrima, “Zero annihilator graph of semiring of matrices over Boolean semiring,” AIP Conf. Proc., vol. 2326, 2021, doi: 10.1063/5.0039557.

R. Yudatama, V. Y. Kurniawan, and S. B. Wiyono, “Annihilator graph of semiring of matrices over Boolean semiring,” J. Phys. Conf. Ser., vol. 1494, no. 1, 2020, doi: 10.1088/1742-6596/1494/1/012009.

E. Y. Çelikel, “The Triple Zero Graph of a Commutative Ring,” Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., vol. 70, no. 2, pp. 653–663, 2021, doi: 10.31801/cfsuasmas.786804.

J. B. Schneider, S. L. Broschat, and J. Dahmen, Algorithmic problem solving with Python. United States: Washington State University, 2014.

W. Tapanyo, T. Tongpikul, and S. Kaewpradit, “gcd-Pairs in Zn and their graph representations,” pp. 1–11, 2022, [Online]. Available: http://arxiv.org/abs/2206.01847

Y. Tian and L. Lixiang, “Comments on the Clique Number of Zero-Divisor Graphs of Zn,” J. Math., vol. 2022, 2022.

T. Hartati and V. Y. Kurniawan, “Construct The Triple Nilpotent Graph of Ring Using Python,” vol. 020004, no. 2886, 2023.

G. Chartrand and P. Zhang, A First Course in Graph Theory. New York: Dover Publication, 2012.

Published
2024-03-01
How to Cite
[1]
P. Wulandari, V. Kurniawan, and N. Kurdhi, “CONSTRUCT THE TRIPLE ZERO GRAPH OF RING Z_n USING PYTHON”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0507-0516, Mar. 2024.