EXAMINING RISK FACTORS OF ANEMIA IN PREGNANCY USING HYBRID LOGISTIC REGRESSION MODEL AND ROUGH SET THEORY

  • Izzati Rahmi Mathematics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Riswan Efendi Mathematics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Nor Azah Samat Mathematics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Hazmira Yozza Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Universitas Andalas, Indonesia
  • Mahdhivan Syafwan Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Universitas Andalas, Indonesia
Keywords: Anemia in pregnancy, Logistic Regression, Rough Set Theory, Inconsistent Sample, Hybrid Model

Abstract

Anemia in pregnancy is a potential danger to the mother and child. Therefore, the risk of anemia in pregnant women requires serious attention from all relevant parties. Considering the numerous negative effects caused by anemia in pregnant women, efforts must be made to prevent and treat anemia in pregnant women by understanding the factors that influence it. This study assesses the risk factors for anemia in pregnant women at Tegal Rejo Community Health Center, Yogyakarta Province. In this paper, a new integrated classification approach with binary logistic regression (LR) analysis and Rough Set Theory (RST) is proposed, in order to examine factors on the incidence of anemia in pregnancy. The proposed model is called the Logistic Regression and Reduction Rough Set (LR3S). In LR3S model, the RST technique is used to detect inconsistent sample and removing inconsistent sample that have probability less than 0.5 before doing LR modelling. To evaluate the development of the resulting model, a comparison was made of the performance of Original Logistic Regression (OLR), LR model after removed outlier namely as Remove Outlier Original Logistic Regression (RO2LR) and LR3S. Using a number of model performance metrics, it is found that LR3S has the best performance for the three models used. Using LR3S model, it is found that CED status, educational level, parity and gestational are significant variable impact on the incidence of anemia.

 

Downloads

Download data is not yet available.

References

L. P. Sari, S. Sarwinanti, and S. N. Djannah, “Hubungan Status Gizi Dengan Kejadian Anemia Pada Ibu Hamil Di Puskesmas Kotagede Ii Yogyakarta,” Jurnal Cakrawala Promkes, vol. 2, no. 1, p. 24, Mar. 2020, doi: 10.12928/promkes.v2i1.1576.

Kementerian Kesehatan RI, “Profil Kesehatan Indonesia Tahun 2020,” Kementerian Kesehatan RI. Accessed: Oct. 20, 2023. [Online]. Available: https://www. kemkes.go.id/id/profil-kesehatan-indonesia-2020

A. D. Purwanto, “Risk Factors Correlated with Incidence of Low Birth Weight Cases,” Jurnal Berkala Epidemiologi, vol. 4, no. 3, p. 349, Jan. 2017, doi: 10.20473/jbe.v4i3.2016.349-359.

R. Anwar, K. Razzaq, and N. Noor, “Impact of Maternal Anemia on Perinatal Outcome,” Pakistan Armed Forces Medical Journal, vol. 69, no. 2, pp. 397–402, 2019, Accessed: Nov. 17, 2023. [Online]. Available: https://pafmj.org/PAFMJ/article/view/2762

N. N. Al-Hajjiah and M. A. Almkhadree, “The effect of maternal anemia on the anthropometric measurements in full-term neonates,” Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 4, pp. 422–424, Apr. 2018, doi: 10.22159/ajpcr.2018.v11i4.25579.

M. Nair et al., “Association between maternal anaemia and pregnancy outcomes: a cohort study in Assam, India”, doi: 10.1136/bmjgh-2015.

T. Vural, E. Toz, A. Ozcan, A. Biler, A. Ileri, and A. H. Inan, “Can anemia predict perinatal outcomes in different stages of pregnancy?,” Pak J Med Sci, vol. 32, no. 6, pp. 1354–1359, Nov. 2016, doi: 10.12669/pjms.326.11199.

F. Heydarpour et al., “Maternal anemia in various trimesters and related pregnancy outcomes: Results from a large cohort study in Iran,” Iran J Pediatr, vol. 29, no. 1, Feb. 2019, doi: 10.5812/ijp.69741.

A. Patel, A. A. Prakash, P. K. Das, S. Gupta, Y. V. Pusdekar, and P. L. Hibberd, “Maternal anemia and underweight as determinants of pregnancy outcomes: Cohort study in eastern rural Maharashtra, India,” BMJ Open, vol. 8, no. 8, Aug. 2018, doi: 10.1136/bmjopen-2018-021623.

S. Parks et al., “Maternal anaemia and maternal, fetal, and neonatal outcomes in a prospective cohort study in India and Pakistan,” BJOG, vol. 126, no. 6, pp. 737–743, May 2019, doi: 10.1111/1471-0528.15585.

B. A. Haider, I. Olofin, M. Wang, D. Spiegelman, M. Ezzati, and W. W. Fawzi, “Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: Systematic review and meta-analysis,” BMJ (Online), vol. 347, no. 7916. BMJ Publishing Group, Jul. 13, 2013. doi: 10.1136/bmj.f3443.

B. Sukrat et al., “Hemoglobin concentration and pregnancy outcomes: A systematic review and meta-analysis,” BioMed Research International, vol. 2013. 2013. doi: 10.1155/2013/769057.

W. F. Balcha et al., “Factors associated with anemia among pregnant women attended antenatal care: a health facility-based cross-sectional study,” 2023, doi: 10.1097/MS9.0000000000000608.

I. Hidayati and E. N. Andyarini, “The Relationship Between The Number of Parities and Pregnancy Age with Maternal Anemia,” Journal of Health Science and Prevention, vol. 2, no. 1, pp. 42–47, Apr. 2018, doi: 10.29080/jhsp.v2i1.113.

B. Sabina Azhar, M. S. Islam, and M. R. Karim, “Prevalence of anemia and associated risk factors among pregnant women attending antenatal care in Bangladesh: A cross-sectional study,” Prim Health Care Res Dev, vol. 22, Nov. 2021, doi: 10.1017/S146342362100061X.

S. M. Davidson, G. Mangalik, and R. I. Riswandha, “Factors Affecting the Incidence of Anemia in Pregnant Women at Ampel and Gladagsari Public Health Center Boyolali Regency in 2019,” PLACENTUM Jurnal Ilmiah Kesehatan dan Aplikasinya, vol. 10, no. 2, p. 2022, 2022.

G. Obai, P. Odongo, and R. Wanyama, “Prevalence of anaemia and associated risk factors among pregnant women attending antenatal care in Gulu and Hoima Regional Hospitals in Uganda: A cross sectional study,” BMC Pregnancy Childbirth, vol. 16, no. 1, Apr. 2016, doi: 10.1186/s12884-016-0865-4.

I. Farahdiba, “Hubungan Kekurangan Energi Kronis (Kek) Dengan Kejadian Anemia Pada Ibu Hamil Primigravida Di Puskesmas Jongaya Makassar Tahun 2021,” Jurnal Kesehatan Delima Pelamonia, vol. 5, no. 1, pp. 24–29, Sep. 2021, doi: 10.37337/jkdp.v5i1.213.

G. Stephen, M. Mgongo, T. Hussein Hashim, J. Katanga, B. Stray-Pedersen, and S. E. Msuya, “Anaemia in Pregnancy: Prevalence, Risk Factors, and Adverse Perinatal Outcomes in Northern Tanzania,” Anemia, vol. 2018, 2018, doi: 10.1155/2018/1846280.

D. A. Suhardi and I. Fadila, “Penerapan Regresi Logistik Biner Untuk Mengukur Resiko Anemia Dengan Status Gizi Ibu Hamil,” Jurnal Matematika, Sains dan Teknologi , vol. 17, no. 1, pp. 50–59, 2016.

A. S. Aji, Y. Yusrawati, S. G. Malik, and N. I. Lipoeto, “Prevalence of anemia and factors associated with pregnant women in West Sumatra, Indonesia: Findings from VDPM Cohort Study,” Jurnal Gizi dan Dietetik Indonesia (Indonesian Journal of Nutrition and Dietetics), vol. 7, no. 3, p. 97, Jun. 2020, doi: 10.21927/ijnd.2019.7(3).97-106.

M. O. Osman, T. Y. Nour, H. M. Bashir, A. K. Roble, A. M. Nur, and A. O. Abdilahi, “Risk factors for anemia among pregnant women attending the antenatal care unit in selected jigjiga public health facilities, somali region, east ethiopia 2019: Unmatched case–control study,” J Multidiscip Healthc, vol. 13, pp. 769–777, 2020, doi: 10.2147/JMDH.S260398.

D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Second. New York: John Willey and Sons, 2000.

A. H. M. R. Imon and A. S. Hadi, “Identification of multiple outliers in logistic regression,” in Communications in Statistics - Theory and Methods, Jan. 2008, pp. 1697–1709. doi: 10.1080/03610920701826161.

Z. Zhang, “Residuals and regression diagnostics: Focusing on logistic regression,” Ann Transl Med, vol. 4, no. 10, May 2016, doi: 10.21037/atm.2016.03.36.

G. A. Tesema et al., “Prevalence and determinants of severity levels of anemia among children aged 6-59 months in sub-Saharan Africa: A multilevel ordinal logistic regression analysis,” PLoS One, vol. 16, no. 4 April, Apr. 2021, doi: 10.1371/journal.pone.0249978

A. Yusuf et al., “Factors influencing childhood anaemia in Bangladesh: A two level logistic regression analysis,” BMC Pediatr, vol. 19, no. 1, Jun. 2019, doi: 10.1186/s12887-019-1581-9.

Z. Pawlak, “Rough sets,” International Journal of Computer & Information Sciences, vol. 11, no. 5, pp. 341–356, Oct. 1982, doi: 10.1007/BF01001956.

A. Burney and Z. Abbas, “Applications of Rough Sets in Health Sciences and Disease Diagnosis,” Recent Researches in Applied Computer Science, vol. 8, no. 3, pp. 153–161, 2015.

I. Yekkala and S. Dixit, “Prediction of Heart Disease Using Random Forest and Rough Set Based Feature Selection,” International Journal of Big Data and Analytics in Healthcare, vol. 3, no. 1, pp. 1–12, Jan. 2018, doi: 10.4018/ijbdah.2018010101.

I. Rahmi, Y. Wulandari, H. Yozza, and M. Syafwan, “Classification of Toddler’s Nutritional Status Using The Rough Set Algorithm,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1483–1494, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1483-1494.

K. Kim, P. Pant, and E. Y. Yamashita, “Hit-and-run crashes: Use of rough set analysis with logistic regression to capture critical attributes and determinants,” Transp Res Rec, no. 2083, pp. 114–121, 2008, doi: 10.3141/2083-13.

D. Liu, T. Li, and D. Liang, “Incorporating logistic regression to decision-theoretic rough sets for classifications,” International Journal of Approximate Reasoning, vol. 55, no. 1 PART 2, pp. 197–210, 2014, doi: 10.1016/j.ijar.2013.02.013.

B. Kan-Kilinç and Y. Yazirli, “Performance of the hybrid approach using three machine learning algorithms,” Pakistan Journal of Statistics and Operation Research, vol. 16, no. 2, pp. 217–224, 2020, doi: 10.18187/PJSOR.V16I2.3069.

K. M. Kaka-Khan, H. Mahmud, and A. A. Ali, “Rough Set-Based Feature Selection for Predicting Diabetes Using Logistic Regression with Stochastic Gradient Decent Algorithm,” UHD Journal of Science and Technology, vol. 6, no. 2, pp. 85–93, Oct. 2022, doi: 10.21928/uhdjst.v6n2y2022.pp85-93.

X. Jia, Y. Rao, L. Shang, and T. Li, “Similarity-based attribute reduction in rough set theory: a clustering perspective,” International Journal of Machine Learning and Cybernetics, vol. 11, no. 5, pp. 1047–1060, May 2020, doi: 10.1007/s13042-019-00959-w.

Rasyidah, R. Efendi, N. M. Nawi, M. M. Deris, and S. M. A. Burney, “Cleansing of inconsistent sample in linear regression model based on rough sets theory,” Systems and Soft Computing, vol. 5, Dec. 2023, doi: 10.1016/j.sasc.2022.200046.

V. Del Giudice, P. De Paola, and G. B. Cantisani, “Rough set theory for real estate appraisals: An application to directional district of Naples,” Buildings, vol. 7, no. 1, Jul. 2017, doi: 10.3390/buildings7010012.

D. R. K. N. Padmi and N. Setyawati, “Faktor-Faktor yang Mempengaruhi Kejadian Anemia pada Ibu Hamil di Puskesmas Tegalrejo Tahun 2017,” Skripsi, Politeknik Kesehatan Kementerian Kesehatan, Kota Yogyakarta, 2018.

Z. Pawlak, “Rough set theory and its applications to data analysis,” Cybern Syst, vol. 29, no. 7, pp. 661–688, 1998, doi: 10.1080/019697298125470.

H. Cao, “The utilization of rough set theory and data reduction based on artificial intelligence in recommendation system,” Soft Computing, vol. 25, no. 3. Springer Science and Business Media Deutschland GmbH, pp. 2153–2164, Feb. 01, 2021. doi: 10.1007/s00500-020-05286-9.

J. Komorowski, L. Polkowski, and A. Skowron, “Rough Sets: A Tutorial. In: Rough fuzzy hybridization: A new trend in decision-making,” in Rough fuzzy hybridization: A new trend in decision-making, Singapore: Springer-Verlag, 1999, pp. 3–98.

X. Li, “Attribute Selection Methods in Rough Set Theory,” San Jose State University, San Jose, CA, USA, 2014. doi: 10.31979/etd.2gh8-udmy.

S. M. Abbas, K. A. Alam, and S. Shamshirband, “A soft-rough set based approach for handling contextual sparsity in context-aware video recommender systems,” Mathematics, vol. 7, no. 8, Aug. 2019, doi: 10.3390/math7080740.

A. Skowron and C. Rauszer, “The Discernibility Matrices and Functions in Information Systems,” in Intelligent Decision Support, Dordrecht: Springer Netherlands, 1992, pp. 331–362. doi: 10.1007/978-94-015-7975-9_21.

R. Andersson, “Implementation of a Rough Knowledge Base System Supporting Quantitative Measures,” Master’s thesis, Linköping Universiity, 2004.

M. Awad and R. Khanna, Efficient Learning Machines Theories Concepts and Applications for Engineers and System Designers. Berkeley: Apress, 2015.

A. Pal, “Logistic regression: A simple primer,” Cancer Research, Statistics, and Treatment, vol. 4, no. 3, pp. 551–554, Jul. 2021, doi: 10.4103/crst.crst_164_21.

J. M. Hilbe, Practical Guide to Logistic Regression. CRC Press, 2015.

D. Pregibon, “Logistic Regression Diagnostics,” The Annals of Statistics, vol. 9, no. 4, Jul. 1981, doi: 10.1214/aos/1176345513.

Published
2024-03-01
How to Cite
[1]
I. Rahmi, R. Efendi, N. Samat, H. Yozza, and M. Syafwan, “EXAMINING RISK FACTORS OF ANEMIA IN PREGNANCY USING HYBRID LOGISTIC REGRESSION MODEL AND ROUGH SET THEORY”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0537-0552, Mar. 2024.