ANALYSIS OF RAINFALL IN INDONESIA USING A TIME SERIES-BASED CLUSTERING APPROACH

  • A'yunin Sofro Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0003-2603-4092
  • Rosalina Agista Riani Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia
  • Khusnia Nurul Khikmah Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0002-9142-6968
  • Riska Wahyu Romadhonia Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia
  • Danang Ariyanto Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia
Keywords: Cluster, Dynamic Time Warping, Hierarchical, Non-hierarchical, Rainfall

Abstract

Indonesia has a tropical climate and has two seasons: dry and rainy. Prolonged drought can cause drought disasters, and rain can cause floods and landslides. According to information from the Meteorology, Climatology, and Geophysics Agency (BMKG), natural disasters such as floods and landslides due to heavy rains have been a severe problem in Indonesia for the past five years. Different regional characteristics can affect the intensity of rain that falls in every province in Indonesia. It can be grouped to determine which provinces have similar characteristics to natural disasters due to rainfall. Later, it can provide information to the government and the public so that they are more aware of natural disasters. So, it is necessary to research and classify provinces in Indonesia for rainfall with cluster analysis. The data used is secondary rainfall data taken from the official BMKG website. Cluster analysis of rainfall in 34 provinces in Indonesia used hierarchical and non-hierarchical methods in this study. The approach that is used in this research limits our clustering of the data. Further research with a machine learning approach is recommended. For the clustering method, the agglomerative hierarchical method includes single, average, and complete linkage. The non-hierarchical method includes k-medoids and fuzzy c-means. The cluster analysis results show that the dynamic time warping (DTW) distance measurement method with the average linkage method has the most optimal cluster results with a silhouette coefficient value of 0.813.

Downloads

Download data is not yet available.

References

B. Suhardi, A. Adiputra, and R. Avrian, “Kajian Dampak Cuaca Ekstrem Saat Siklon Tropis Cempaka dan Dahlia di Wilayah Jawa Barat,” Jurnal Geografi, Edukasi dan Lingkungan (JGEL), vol. 4, no. 2, pp. 61–67, 2020.

Tukidi, “Karakter Curah Hujan Di Indonesia,” Jurnal Geografi, vol. 7, no. 2, pp. 136–145, 2010.

M. Kotz, A. Levermann, and L. Wenz, “The effect of rainfall changes on economic production,” Nature, vol. 601, no. 7892, pp. 223–227, 2022.

I. Ayundari and Sutikno, “Penentuan Zona Musim di Mojokerto Menurut Karakteristik Curah Hujan Dengan Metode Time Series Based Clustering,” INFERENSI, vol. 2, no. 2, pp. 63–70, 2019.

T. W. Liao, “Clustering of time series data—a survey,” Pattern Recognit, vol. 38, no. 11, pp. 1857–1874, 2005.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis : Forecasting and Control Fourth Edition. New Jersey : John Wiley and Sons Inc., 2008. doi: 10.1142/9789813148963_0009.

A. Sardá-Espinosa, “Time-series clustering in R Using the dtwclust package,” R Journal, vol. 11, no. 1, pp. 1–45, 2019, doi: 10.32614/rj-2019-023.

H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, and Y. Wan, “Adaptively constrained dynamic time warping for time series classification and clustering,” Inf Sci (N Y), vol. 534, pp. 97–116, 2020.

G. Marti, F. Nielsen, M. Bińkowski, and P. Donnat, “A review of two decades of correlations, hierarchies, networks and clustering in financial markets,” Progress in information geometry: Theory and applications, pp. 245–274, 2021.

M. A. A. Riyadi, D. S. Pratiwi, A. R. Irawan, and K. Fithriasari, “Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms,” International Journal of Advances in Intelligent Informatics, vol. 3, no. 3, pp. 154–160, 2017.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. Pearson Education, Inc., 2007.

R. M. Shukla and S. Sengupta, “Scalable and robust outlier detector using hierarchical clustering and long short-term memory (lstm) neural network for the internet of things,” Internet of Things, vol. 9, p. 100167, 2020.

S. Maulidani, N. Ihsan, and Sulistiawaty, “Analisis pola dan intensitas curah hujan berdasakan data observasi dan satelit tropical rainfall measuring missions (trmm) 3b42 v7 di makassar,” Jurnal sains dan pendidikan fisika, vol. 11, no. 1, pp. 98–103, 2015.

Supriyati, B. Tjahjono, and S. Effendy, “ANALISIS POLA HUJAN UNTUK MITIGASI ALIRAN LAHAR HUJAN GUNUNG API SINABUNG,” Jurnal Ilmu Tanah dan Lingkungan, vol. 20, no. 2, pp. 95–100, 2018.

Enyew and Steeneveld, “Analysing the Impact of Topography on Precipitation and Flooding on the Ethiopian Highlands,” Journal of Geology & Geosciences, vol. 3, no. 6, 2014, doi: 10.4172/2329-6755.1000173.

V. Niennattrakul and C. A. Ratanamahatana, “On clustering multimedia time series data using k-means and dynamic time warping,” Proceedings - 2007 International Conference on Multimedia and Ubiquitous Engineering, MUE 2007, pp. 733–738, 2007, doi: 10.1109/MUE.2007.165.

C. S. Möller-Levet, F. Klawonn, K. H. Cho, and O. Wolkenhauer, “Fuzzy clustering of short time-series and unevenly distributed sampling points,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2810, no. 0, pp. 330–340, 2003, doi: 10.1007/978-3-540-45231-7_31.

P. Galeano and D. Pella, “Multivariate Analysis in Vector Time Series,” Resenhas, the Journal of the Institute of Mathematics and Statistics of the University of Sao Paolo, vol. 4, pp. 383–403, 2000.

B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis: Fifth Edition. United Kingdom: John Wiley and Son, Ltd., 2011.

Z. Mustofa and Iman Saufik Suasana, “Algoritma Clustering K-Medoids Pada E-Government Bidang Information and Communication Technology Dalam Penentuan Status Edgi,” Jurnal Teknologi Informasi Dan Komunikasi, vol. 9, no. 1, pp. 1–10, 2020, doi: 10.51903/jtikp.v9i1.162.

W. Sanusi, A. Zaky, and B. N. Afni, “Analisis Fuzzy C-Means dan Penerapannya Dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Faktor-faktor Penyebab Gizi Buruk,” Journal of Mathematics, Computations, and Statistics, vol. 2, no. 1, p. 47, 2019, doi: 10.35580/jmathcos.v2i1.12458.

P. Bholowalia and A. Kumar, “EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN,” Int J Comput Appl, vol. 105, no. 9, pp. 975–8887, 2014.

N. Putu, E. Merliana, and A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means,” pp. 978–979, 2015.

Irwanto, Y. Purwananto, and R. Soelaiman, “Optimasi Kinerja Algoritma Klasterisasi K-Means,” Jurnal Teknik ITS, vol. 1, no. 1, pp. 197–202, 2012.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis., vol. 47, no. 2. 1991. doi: 10.2307/2532178.

Published
2024-05-25
How to Cite
[1]
A. Sofro, R. Riani, K. Khikmah, R. Romadhonia, and D. Ariyanto, “ANALYSIS OF RAINFALL IN INDONESIA USING A TIME SERIES-BASED CLUSTERING APPROACH”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 0837-0848, May 2024.