MODELING THE INCIDENCE OF MALNUTRITION IN BOGOR REGENCY USING ZERO-INFLATED NEGATIVE BINOMIAL MIXED EFFECT MODEL
Abstract
Modeling response variables in the form of count data generally uses a model based on the Poisson distribution. However, some conditions, such as the presence of excess zero, can be found in the data that result in overdispersion, which will have an impact on the resulting variance in the model. In this paper, three approaches, namely the Poisson Mixed Model, the Negative Binomial (NB) Mixed Model, and the Zero-Inflated Negative Binomial (ZINB) Mixed Model, are used to model the incidence of malnutrition in Bogor Regency. The data used in this study are secondary data sourced from the West Java open data website. Based on the results of data analysis, it appears that the ZINB Mixed Model method is a method capable of accommodating random effects, overdispersion, and excess zero in modeling malnutrition in Bogor Regency. Variables that significantly affect the occurrence of malnutrition cases in villages in Bogor Regency include the Number of Children Weighed Routinely Every Month, Number of Children Measured for Length and Height Twice a Year, Number of Children under 12 Months Old Who Received Complete Basic Immunization, Number of Posyandu (Integrated Health Post), and Number of Parents/Caregivers Participating in Monthly Parenting (PAUD).
Downloads
References
C. B. Girik Allo, B. W. Otok, and Purhadi, “Estimation Parameter of Generalized Poisson Regression Model Using Generalized Method of Moments and Its Application,” IOP Conf Ser Mater Sci Eng, vol. 546, no. 5, p. 052050, Jun. 2019, doi: 10.1088/1757-899X/546/5/052050.
D. R. Cox, “Some remarks on overdispersion,” Biometrika, vol. 70, no. 1, pp. 269–274, Apr. 1983, doi: 10.1093/BIOMET/70.1.269.
O. Maxwell, B. A. Mayowa, I. U. Chinedu, and A. E. Peace, “Modelling Count Data; A Generalized Linear Model Framework,” American Journal of Mathematics and Statistics, vol. 8, no. 6, pp. 179–183, 2018, doi: 10.5923/J.AJMS.20180806.03.
C. B. Dean and E. R. Lundy, “Overdispersion,” Wiley StatsRef: Statistics Reference Online, pp. 1–9, Feb. 2016, doi: 10.1002/9781118445112.STAT06788.PUB2.
A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith, “Zero-Truncated and Zero-Inflated Models for Count Data,” pp. 261–293, 2009, doi: 10.1007/978-0-387-87458-6_11.
R. Fang, B. D. Wagner, J. K. Harris, and S. A. Fillon, “Zero-inflated negative binomial mixed model: an application to two microbial organisms important in oesophagitis,” Epidemiol Infect, vol. 144, no. 11, pp. 2447–2455, Aug. 2016, doi: 10.1017/S0950268816000662.
R. Fang, B. D. Wagner, J. K. Harris, and S. A. Fillon, “Application of zero-inflated negative binomial mixed model to human microbiota sequence data,” Jan. 2014, doi: 10.7287/PEERJ.PREPRINTS.215V1.
X. Zhang and N. Yi, “Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data,” Bioinformatics, vol. 36, no. 8, pp. 2345–2351, Apr. 2020, doi: 10.1093/BIOINFORMATICS/BTZ973.
M. Bugallo, M. D. Esteban, M. F. Marey-Pérez, and D. Morales, “Wildfire prediction using zero-inflated negative binomial mixed models: Application to Spain,” J Environ Manage, vol. 328, p. 116788, Feb. 2023, doi: 10.1016/J.JENVMAN.2022.116788.
S. June Adwendi, A. Saefuddin, B. Susetyo, S. J. Adwendi, A. Saefuddin, and B. Susetyo, “A STUDY OF SMALL AREA ESTIMATION TO MEASURE MULTIDIMENSIONAL POVERTY WITH MIXED MODEL POISSON, ZIP, AND ZINB,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 1, pp. 0439–0448, Apr. 2023, doi: 10.30598/BAREKENGVOL17ISS1PP0439-0448.
W. Bodromurti, K. A. Notodiputro, and A. Kurnia, “Zero Inflated Binomial Model for Infant Mortality Data in Indonesia,” International Journal of Applied Engineering Research, vol. 13, no. 6, pp. 3139–3143, 2018, [Online]. Available: http://www.ripublication.com
B. Hartono, A. Kurnia, and Indahwati, “Zero Inflated Binomial Models in Small Area Estimation with Application to Unemployment Data in Indonesia,” IJCSN-International Journal of Computer Science and Network, vol. 6, no. 6, 2017, [Online]. Available: www.IJCSN.orgImpactFactor:1.5746
M. Jumiartanti, indahwati, and A. Kurnia, “Zero Inflated Beta Model in Small Area Estimation to Estimate Poverty Rates on Village Level in Langsa Municipality,” IJCSN-International Journal of Computer Science and Network, vol. 6, no. 6, 2017, [Online]. Available: www.IJCSN.orgImpactFactor:1.5812
Kementrian Kesehatan Republik Indonesia, “Hasil survei Status Gizi Indonesia (SSGI) 2022,” Jakarta, Feb. 2023.
D. P. Lestari, “Upaya Pencegahan Risiko Gizi Buruk pada Balita: Literature Review,” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 22, no. 1, pp. 532–536, Mar. 2022, Accessed: Jun. 17, 2023. [Online]. Available: http://ji.unbari.ac.id/index.php/ilmiah/article/view/1828
A. M. N. Renzaho et al., “The impact of unconditional child cash grant on child malnutrition and its immediate and underlying causes in five districts of the Karnali Zone, Nepal - A trend analysis,” Archives of Public Health, vol. 77, no. 1, pp. 1–18, May 2019, doi: 10.1186/S13690-019-0352-2/TABLES/7.
Lindani. Dube, “Joint modelling of child poverty and malnutrition in children aged 6 to 59 months in Malawi.,” 2019, Accessed: Jun. 17, 2023. [Online]. Available: https://researchspace.ukzn.ac.za/handle/10413/19910
H. M. Fenta, T. Zewotir, and E. K. Muluneh, “Spatial data analysis of malnutrition among children under-five years in Ethiopia,” BMC Med Res Methodol, vol. 21, no. 1, pp. 1–13, Dec. 2021, doi: 10.1186/S12874-021-01391-X/TABLES/2.
R. N. Rachmawati and N. H. Pusponegoro, “Spatial Bayes Analysis on Cases of Malnutrition in East Nusa Tenggara, Indonesia,” Procedia Comput Sci, vol. 179, pp. 337–343, Jan. 2021, doi: 10.1016/J.PROCS.2021.01.014.
M. A. S. Mullah, Z. Hossain, and A. Benedetti, “Comparing estimation approaches for generalized additive mixed models with binary outcomes,” https://doi.org/10.1080/00949655.2023.2222864, pp. 1–20, Jun. 2023, doi: 10.1080/00949655.2023.2222864.
C. Dhanamjayulu et al., “Identification of malnutrition and prediction of BMI from facial images using real-time image processing and machine learning,” IET Image Process, vol. 16, no. 3, pp. 647–658, Feb. 2022, doi: 10.1049/IPR2.12222.
I. A. Azagi, “Measles Disease Analysis in Bengkulu Province Using Zero Inflated Poisson Regression and Zero Inflated Negative Binomial Regression,” Journal of Statistics and Data Science, vol. 1, no. 2, pp. 1–9, Oct. 2022, doi: 10.33369/JSDS.V1I2.24028.
F. Sarvi, A. Moghimbeigi, H. Mahjub, M. Nasehi, and M. Khodadost, “Factors associated with mortality from tuberculosis in Iran: an application of a generalized estimating equation-based zero-inflated negative binomial model to national registry data,” Epidemiol Health, vol. 41, 2019, doi: 10.4178/EPIH.E2019032.
N. S. Abu Bakar, J. Ab Hamid, M. S. J. Mohd Nor Sham, M. N. Sham, and A. S. Jailani, “Count data models for outpatient health services utilisation,” BMC Med Res Methodol, vol. 22, no. 1, pp. 1–9, Dec. 2022, doi: 10.1186/S12874-022-01733-3/TABLES/4.
X. Zhang et al., “Negative binomial mixed models for analyzing microbiome count data,” BMC Bioinformatics, vol. 18, no. 1, Jan. 2017, doi: 10.1186/S12859-016-1441-7.
L. Scrucca, “Quality Control Charts [R package qcc version 2.7],” Jul. 2017, Accessed: Jun. 15, 2023. [Online]. Available: https://CRAN.R-project.org/package=qcc
M. Friendly, “‘vcd’ Extensions and Additions [R package vcdExtra version 0.8-4],” Apr. 2023, Accessed: Jun. 15, 2023. [Online]. Available: https://CRAN.R-project.org/package=vcdExtra
M. Brooks, B. Bolker, and K. Kristensen, “Generalized Linear Mixed Models using Template Model Builder.” Apr. 05, 2023.
M. R. N. Sari and L. Y. Ratnawati, “Hubungan Pengetahuan Ibu tentang Pola Pemberian Makan dengan Status Gizi Balita di Wilayah Kerja Puskesmas Gapura Kabupaten Sumenep,” Amerta Nutrition, vol. 2, no. 2, pp. 182–188, Jun. 2018, doi: 10.20473/AMNT.V2I2.2018.182-188.
Copyright (c) 2024 Dwi Agustin Nuriani Sirodj, Kusman Sadik, Anang Kurnia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.