COMPARISON OF NAÏVE BAYES AND K-NEAREST NEIGHBOR MODELS FOR IDENTIFYING THE HIGHEST PREVALENCE OF STUNTING CASES IN EAST JAVA

  • Teguh Herlambang Information System Department, FEBTD, Universitas Nahdlatul Ulama Surabaya, Indonesia https://orcid.org/0000-0001-7940-5104
  • Vaizal Asy'ari Postgraduate of Department of Information Technology, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
  • Ragil Puji Rahayu Information System Department, FEBTD, Universitas Nahdlatul Ulama Surabaya, Indonesia
  • Aji Akbar Firdaus Department of Engineering, Faculty of Vocational, Universitas Airlangga, Indonesia https://orcid.org/0000-0001-5731-6629
  • Nyoman Juniarta Université de Lorraine, Nancy, France https://orcid.org/0000-0003-4081-2866
Keywords: K-nearest Neighbor, Naive Bayes, Stunting

Abstract

Indonesia will experience a demographic bonus in 2030, where the productive age group will dominate the population and become a buffer for the economy. However, this potential is in vain if human resources experience stunting. According to WHO (2015), stunting is a disorder of child growth and development due to chronic malnutrition and repeated infections, characterized by below-standard length or height. Based on the background of the problem, the author wants to compare the prediction of the prevalence of the highest stunting cases in East Java using the Naive Bayes method and the K-Nearest Neighbor method. The stages carried out in this study are data collection, initial data processing, advanced data processing using the Naïve Bayes Method and K-Nearest Neighbor, and comparative analysis. The results of the implementation of the Naïve Bayes and K-Nearest Neighbor methods are in the form of stunting prevalence prediction charts with variables that affect LBW and TTD. The results of simulations conducted in 6 regions, the Naive Bayes method gets the highest accuracy value of 83.33% in simulation one and 66.67%. The smallest RMSE value is 0.382 simulation 1 and 0.469 simulation 2. This shows that the Naive Bayes method can predict well.

Downloads

Download data is not yet available.

References

R. Abdila, “Kominfo ajak masyarakat turunkan Prevalensi Stunting,” Kominfo. Accessed: Dec. 03, 2023. [Online]. Available: https://www.kominfo.go.id/content/detail/17436/kominfo-ajak-masyarakat-turunkan-prevalensi-stunting/0/sorotan_media#:~:text=Upaya%20pemerintah%20mencegah%20stunting%20dilakukan,untuk%20meningkatkan%20status%20gizi%20anak

D. F. Susanti, “Mengenal Apa Itu Stunting…,” Kementerian Kesehatan Direktorat Jenderal Pelayanan Kesehatan. Accessed: Dec. 03, 2023. [Online]. Available: https://yankes.kemkes.go.id/view_artikel/1388/mengenal-apa-itu-stunting#:~:text=Sahabat%20sehat%2C%20definisi%20stunting%20sendiri,badannya%20berada%20di%20bawah%20standar

Tim Medis Siloam Hospitals, “Mengenal Stunting: Pengertian, Penyebab, Serta Pencegahan,” Siloam Hospitals. Accessed: Dec. 03, 2023. [Online]. Available: https://www.siloamhospitals.com/informasi-siloam/artikel/apa-itu-stunting

Jatim Newsroom, “Targetkan Stunting Jatim Turun Hingga 13,5% Tahun 2024, Wagub Emil: Intervensi Harus Sesuai Data Riil Di Lapangan,” Dinas Kominfo Provinsi Jatim. Accessed: Dec. 03, 2023. [Online]. Available: https://kominfo.jatimprov.go.id/berita/targetkan-stunting-jatim-turun-hingga-13-5-tahun-2024-wagub-emil-intervensi-harus-sesuai-data-riil-di-lapangan

M. Y. Anshori et al., “Estimation of closed hotels and restaurants in Jakarta as impact of corona virus disease spread using adaptive neuro fuzzy inference system,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 11, no. 2, pp. 462–472, Jun. 2022.

F. S. Nugraha, M. J. Shidiq, and S. Rahayu, “Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Kanker Payudara,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 149–156, Aug. 2019.

F. A. Susanto et al., “Estimation of Closed Hotels and Restaurants in Jakarta as Impact of Corona Virus Disease (Covid-19) Spread Using Backpropagation Neural Network,” Nonlinear Dynamics and Systems Theory, vol. 22, no. 4, pp. 457–467, 2022.

M. Y. Anshori, I. H. Santoso, T. Herlambang, D. Rahmalia, K. Oktafianto, and P. Katias, “Forecasting of Occupied Rooms in the Hotel Using Linear Support Vector Machine,” 2023.

F. S. Rini, T. D. Wulan, and T. Herlambang, “Forecasting the Number of Demam Berdarah Dengue (DBD) Patients Using the Fuzzy Method at the Siwalankerto Public Health Center,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2023.

A. Muhith, I. H. Susanto, D. Rahmalia, D. Adzkiya, and T. Herlambang, “The Analysis of Demand and Supply of Blood in Hospital in Surabaya City Using Panel Data Regression,” Nonlinear Dynamics and Systems Theory, vol. 22, no. 5, pp. 550–560, 2022.

M. Y. Anshori, T. Herlambang, P. Katias, F. A. Susanto, and R. R. Rasyid, “Profitability estimation of XYZ company using H-infinity and Ensemble Kalman Filter,” in The 5th International Conference of Combinatorics, Graph Theory, and Network Topology (ICCGANT 2021), IOP Publishing Ltd, Jan. 2021.

D. F. Karya, P. Katias, and T. Herlambang, “Stock Price Estimation Using Ensemble Kalman Filter Square Root Method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Apr. 2018. doi: 10.1088/1742-6596/1008/1/012017.

C. N. Dengen, K. Kusrini, and E. T. Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” SISFOTENIKA, vol. 10, no. 1, p. 1, Jan. 2020, doi: 10.30700/jst.v10i1.484.

D. B. Magfira et al., “Electronic Nose for Classifying Civet Coffee and Non-Civet Coffee,” 2023.

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, p. 777, Apr. 2022, doi: 10.30865/mib.v6i2.3566.

Y. Findawati, I. R. I. Astutik, A. S. Fitroni, I. Indrawati, and N. Yuniasih, “Comparative analysis of Naïve Bayes, K Nearest Neighbor and C.45 method in weather forecast,” J Phys Conf Ser, vol. 1402, no. 6, p. 066046, Dec. 2019, doi: 10.1088/1742-6596/1402/6/066046.

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, p. 777, Apr. 2022, doi: 10.30865/mib.v6i2.3566.

A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, Sep. 2021, doi: 10.14421/jiska.2021.6.3.178-188.

V. Asy’ari, M. Y. Anshori, T. Herlambang, I. W. Farid, D. Fidita Karya, and M. Adinugroho, “Forecasting average room rate using k-nearest neighbor at Hotel S,” in 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), IEEE, Nov. 2023, pp. 496–500.

M. R. Romadhon and F. Kurniawan, “A Comparison of Naive Bayes Methods, Logistic Regression and KNN for Predicting Healing of Covid-19 Patients in Indonesia,” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), IEEE, Apr. 2021, pp. 41–44. doi: 10.1109/EIConCIT50028.2021.9431845.

W. Ananda, M. Safii, and M. Fauzan, “Prediksi Jumlah Hasil Panen Sawit Menggunakan Algoritma Naive Bayes,” Terapan Informatika Nusantara, vol. 1, no. 10, 2021.

V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” J Supercomput, vol. 77, no. 5, pp. 5198–5219, May 2021, doi: 10.1007/s11227-020-03481-x.

Trivusi, “Pengertian dan Contoh Algoritma Naive Bayes Classifier,” Trivusi. Accessed: Dec. 06, 2023. [Online]. Available: https://www.trivusi.web.id/2022/07/algoritma-naive-bayes.html

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, p. 777, Apr. 2022, doi: 10.30865/mib.v6i2.3566.

Trivusi, “Yuk Kenali Apa itu Algoritma K-Nearest Neighbors (KNN),” Trivusi. Accessed: Dec. 06, 2023. [Online]. Available: https://www.trivusi.web.id/2022/06/algoritma-knn.html

U. Hidayah and A. Sifaunajah, Cara Mudah Memahami Algortima K-Nearest Neighbor Studi Kasus Visual Basic 6.0. Jombang: LPPM Universitas KH. A. Wahab Hasbullah, 2019.

F. Gorunescu, Data Mining: Concepts, Models and Techniques, vol. 12. Berlin, Heidelberg: Springer Science & Business Media, 2011.

V. Asy’ari, M. Y. Anshori, T. Herlambang, I. W. Farid, D. Fidita Karya, and M. Adinugroho, “Forecasting average room rate using k-nearest neighbor at Hotel S,” in 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), IEEE, Nov. 2023, pp. 496–500. doi: 10.1109/ICAMIMIA60881.2023.10427942.

Published
2024-10-11
How to Cite
[1]
T. Herlambang, V. Asy’ari, R. Rahayu, A. Firdaus, and N. Juniarta, “COMPARISON OF NAÏVE BAYES AND K-NEAREST NEIGHBOR MODELS FOR IDENTIFYING THE HIGHEST PREVALENCE OF STUNTING CASES IN EAST JAVA”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2153-2164, Oct. 2024.

Most read articles by the same author(s)