MATHEMATICS MODEL OF COMPACT TUMOR TO ANALYZE THE EFFECT ANTIANGIOGENIC THERAPY

  • Eristia Arfi Mathematics Department, Faculty of Science, Institut Teknologi Sumatera, Indonesia https://orcid.org/0009-0008-1439-2742
  • Dwi Mutiara Putri Mathematics Department, Faculty of Science, Institut Teknologi Sumatera, Indonesia
  • Yeni Gede Wibarani Mathematics Department, Faculty of Science, Institut Teknologi Sumatera, Indonesia
  • Nela Rizka Mathematics Department, Faculty of Science, Institut Teknologi Sumatera, Indonesia
Keywords: Tumor, Mathematics Model, Antiangiogenic Therapy

Abstract

Based on their growth, tumors are classified into benign(compact) tumors and malignant (invasive) tumors. One of the treatments used for tumors is antiangiogenic therapy because this therapy has low toxicity. This study examines the effect of antiangiogenic therapy on compact tumors. The number of tumor cells changes over time are influenced by proliferation, death, and migration tumor cell. Antiangiogenic therapy can inhibit the process of angiogenesis which affect the dynamics of glucose flow. A lack of glucose flow will cause a decrease in tumor cell proliferation process which will decrease tumor growth rate. The finding suggests that maintaining glucose levels at or below a critical threshold  is effective therapy.

Downloads

Download data is not yet available.

References

L. Schwartzberg, E. S. Kim, D. Liu, and D. Schrag, “Precision Oncology: Who, How, What, When, and When Not?,” 2024.

S. K. Zahro’, “JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG,” 2014.

L. M. Wisudawati, “KLASIFIKASI TUMOR JINAK DAN TUMOR GANAS PADA CITRA MAMMOGRAM MENGGUNAKAN GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DAN SUPPORT VECTOR MACHINE (SVM),” J. Ilm. Inform. Komput., vol. 26, no. 2, pp. 176–186, 2021, doi: 10.35760/ik.2021.v26i2.4897.

A. Laruelle, C. Manini, E. Iñarra, and J. I. López, “Metastasis, an Example of Evolvability,” Cancers, vol. 13, no. 15, p. 3653, Jul. 2021, doi: 10.3390/cancers13153653.

A. D’Alessio, F. Moccia, J.-H. Li, A. Micera, and T. R. Kyriakides, “Angiogenesis and Vasculogenesis in Health and Disease,” BioMed Res. Int., vol. 2015, pp. 1–2, 2015, doi: 10.1155/2015/126582.

C. T. Sardjono and F. Sandra, “ANGIOGENESIS: Patofisiologi dan Aplikasi Klinis”.

F. Lopes-Coelho, F. Martins, S. A. Pereira, and J. Serpa, “Anti-Angiogenic Therapy: Current Challenges and Future Perspectives,” Int. J. Mol. Sci., vol. 22, no. 7, p. 3765, Apr. 2021, doi: 10.3390/ijms22073765.

G. E. Mahlbacher, K. C. Reihmer, and H. B. Frieboes, “Mathematical modeling of tumor-immune cell interactions,” J. Theor. Biol., vol. 469, pp. 47–60, May 2019, doi: 10.1016/j.jtbi.2019.03.002.

A. M. Jarrett et al., “Mathematical models of tumor cell proliferation: A review of the literature,” Expert Rev. Anticancer Ther., vol. 18, no. 12, pp. 1271–1286, Dec. 2018, doi: 10.1080/14737140.2018.1527689.

H. N. Weerasinghe, P. M. Burrage, K. Burrage, and D. V. Nicolau, “Mathematical Models of Cancer Cell Plasticity,” J. Oncol., vol. 2019, pp. 1–14, Oct. 2019, doi: 10.1155/2019/2403483.

H. M. Yang, “Mathematical modeling of solid cancer growth with angiogenesis,” Theor. Biol. Med. Model., vol. 9, no. 1, p. 2, Dec. 2012, doi: 10.1186/1742-4682-9-2.

M. Kuznetsov, “Mathematical Modeling Shows That the Response of a Solid Tumor to Antiangiogenic Therapy Depends on the Type of Growth,” Mathematics, vol. 8, no. 5, p. 760, May 2020, doi: 10.3390/math8050760.

M. Oh, S. Batty, N. Banerjee, and T.-H. Kim, “High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells,” Mol. Biol. Cell, vol. 34, no. 8, p. ar79, Jul. 2023, doi: 10.1091/mbc.E22-12-0560.

M. A. Feitelson et al., “Sustained proliferation in cancer: Mechanisms and novel therapeutic targets,” Semin. Cancer Biol., vol. 35, pp. S25–S54, Dec. 2015, doi: 10.1016/j.semcancer.2015.02.006.

R. I. Teleanu, C. Chircov, A. M. Grumezescu, and D. M. Teleanu, “Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment,” J. Clin. Med., vol. 9, no. 1, p. 84, Dec. 2019, doi: 10.3390/jcm9010084.

Published
2024-07-31
How to Cite
[1]
E. Arfi, D. Putri, Y. Wibarani, and N. Rizka, “MATHEMATICS MODEL OF COMPACT TUMOR TO ANALYZE THE EFFECT ANTIANGIOGENIC THERAPY”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1585-1594, Jul. 2024.