T-IDEAL AND α-IDEAL OF BP-ALGEBRAS

  • Sri Gemawati Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
  • Musraini M Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
  • Ayunda Putri Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
  • Rike Marjulisa Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
  • Elsi Fitria Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
Keywords: BP-algebra, T-ideal, α-ideal, kernel

Abstract

This paper explores the characteristics of two distinct ideal types within BP-algebra, specifically T-ideal and -ideal. Initially, we elucidate the characteristics of the T-ideal in BP-algebra, establishing its connections with the perfect, normal, and normal ideal in BP-algebra. Subsequently, we demonstrate that the kernel of a homomorphism in BP-algebra constitutes a T-ideal. Moving forward, we delineate the properties of -ideal in BP-algebra, highlighting its relationships with ideal and filter in the context of BP-algebra. Additionally, we explore the characteristics of -ideal and subalgebra in 0-commutative BP-algebra. Finally, it is proven that the kernel of a homomorphism in 0-commutative BP-algebra can be identified as an -ideal.

Downloads

Download data is not yet available.

References

J. Neggers and H. S. Kim, “On B-algebras,” 2002.

C. B. Kim and H. S. Kim, “On BN-algebras,” Kyungpook Mathematical Journal, vol. 53, no. 2, pp. 175–184, 2013, doi: 10.5666/KMJ.2013.53.2.175.

S. Shin Ahn and J. Soon Han, “On BP-algebras,” 2013.

E. Fitria, S. Gemawati, and Kartini, “Prime ideals in B-algebras,” International Journal of Algebra, vol. 11, pp. 301–309, 2017, doi: 10.12988/ija.2017.7838.

G. #1, E. Fitria, A. Hadi, and M. M. #4, “Complete ideal and n-ideal of BN-algebras,” International Journal of Mathematics Trends and Technology, vol. 66, pp. 52–59, 2020, doi: 10.14445/22315373/IJMTT-V66I11P503.

S. Gemawati, M. Musraini, A. Hadi, L. Zakaria, and E. Fitria, “On r-ideals and m-k-ideals in BN-algebras,” Axioms, vol. 11, no. 6, Jun. 2022, doi: 10.3390/axioms11060268.

G. Dymek and A. Walendziak, “(Fuzzy) Ideals of BN-algebras,” Scientific World Journal, vol. 2015, 2015, doi: 10.1155/2015/925040.

K. Rajam and M. Chandramouleeswaran, “L-fuzzy T-ideals of β-algebras,” Applied Mathematical Sciences, vol. 9, no. 145–148, pp. 7221–7228, 2015, doi: 10.12988/ams.2015.59581.

H. K. Abdullah and A. A. Atshan, “Complete ideal and n-ideal of B-algebra,” Applied Mathematical Sciences, vol. 11, pp. 1705–1713, 2017, doi: 10.12988/ams.2017.75159.

S. S. Ahn, J. M. Ko, and A. B. Saeid, “On ideals of BI-algebras,” 2019.

M. Murali Krishna Rao, “r-Ideals and m-k-ideals in inclines,” Discussiones Mathematicae - General Algebra and Applications, vol. 40, no. 2, pp. 297–309, Dec. 2020, doi: 10.7151/dmgaa.1340.

S. Gemawati and E. Fitria, “f q-Derivation of BP-algebras,” 2023.

Y. Christopher Jefferson and M. Chandramouleeswaran Head, “Fuzzy BP-ideal,” 2016. [Online]. Available: http://www.ripublication.com/gjpam.htm

Y. C. Jefferson and M. Chandramouleeswaran, “Fuzzy T-ideals in BP-algebras,” International Journal of Contemporary Mathematical Sciences, vol. 11, pp. 425–436, 2016, doi: 10.12988/ijcms.2016.6845.

O. Rashad El-Gendy, “Bipolar Fuzzy -ideal of BP-algebra,” American Journal of Mathematics and Statistics, vol. 2020, no. 2, pp. 33–37, 2020, doi: 10.5923/j.ajms.20201002.01.

Published
2024-05-25
How to Cite
[1]
S. Gemawati, M. M, A. Putri, R. Marjulisa, and E. Fitria, “T-IDEAL AND α-IDEAL OF BP-ALGEBRAS”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 1129-1134, May 2024.