ALGORITHM FOR CONSTRUCTING TRIPLE IDENTITY GRAPH OF RING Z_n USING PYTHON

  • Vika Yugi Kurniawan Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0001-8475-7243
  • Chessa Fanny Ekasiwi Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Indonesia
Keywords: Commutative Ring, Triple Identity Graph, Python, Integer Ring Modulo-n

Abstract

Let R be a commutative ring. The triple identity graph of ring R is denoted by TE(R) with sets of vertices  Two different vertices  and  are adjacent if and only if there is an element  in  such that  and . To easily visualize the triple identity graph, a program is needed to represent it briefly. Python can easily manipulate, analyze, and visualize data. Therefore, this study uses Python to construct the algorithm for  In this research, some examples will be given and then be observed for new characteristics of the triple identity graph of ring  such as the connectedness, the diameter, and the girth. And we find the characterize  for which graph  is empty, connected, or Hamiltonian.

Downloads

Download data is not yet available.

References

I. Beck, “Coloring of commutative rings,” J. Algebr., vol. 116, no. 1, pp. 208–226, 1988, doi: 10.1016/0021-8693(88)90202-5.

D. F. Anderson, T. Asir, A. Badawi, and T. T. Chelvam, Graphs from Rings. Springer International Publishing, 2021. doi: 10.1007/978-3-030-88410-9.

D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” J. Algebr., vol. 217, no. 2, pp. 434–447, Jul. 1999, doi: 10.1006/jabr.1998.7840.

D. F. Anderson and D. Weber, “The zero-divisor graph of a commutative ring without identity,” Int. Electron. J. Algebr., vol. 23, 2018, doi: 10.24330/ieja.373663.

A. Durić, S. Jevcrossed d signenić, P. Oblak, and N. Stopar, “The total zero-divisor graph of a commutative ring,” J. Algebr. its Appl., vol. 18, no. 10, 2019, doi: 10.1142/S0219498819501901.

G. Kalaimurugan, P. Vignesh, and T. Tamizh Chelvam, “On zero-divisor graphs of commutative rings without identity,” J. Algebr. its Appl., vol. 19, no. 12, 2020, doi: 10.1142/S0219498820502266.

S. Pirzada, M. Aijaz, and M. I. Bhat, “On zero divisor graphs of the rings Zn,” Afrika Mat., vol. 31, no. 3–4, 2020, doi: 10.1007/s13370-019-00755-3.

E. Yetk, “THE TRIPLE ZERO GRAPH OF A COMMUTATIVE RING,” Com mun.Fac.Sci.Univ.Ank.Ser, no. 2, pp. 653–663, 2021, doi: 10.31801/cfsuasm.

F. Smarandache and W. B. V. Kandasamy, “Groups as graphs,” 2009. [Online]. Available: https://digitalrepository.unm.edu/math_fsp

H. Q. Mohammad and N. H. Shuker, “Idempotent Divisor Graph of Commutative Ring,” Iraqi J. Sci., vol. 63, no. 2, 2022, doi: 10.24996/ijs.2022.63.2.21.

V. Yugi Kurniawan, B. Purboutomo, and N. Arfawi Kurdhi, “Connectivity of The Triple Idempotent Graph of Ring Z n,” 2024.

V. K. Sharma, V. Kumar, S. Sharma, and S. Pathak, “Introduction to Python Programming,” in Python Programming, Chapman and Hall/CRC, 2021, pp. 1–8. doi: 10.1201/9781003185505-1.

T. Hartati and V. Y. Kurniawan, “Construct the triple nilpotent graph of ring using python,” in AIP Conference Proceedings, 2023. doi: 10.1063/5.0154928.

P. Wulandari, V. Y. Kurniawan, and N. A. Kurdhi, “CONSTRUCT THE TRIPLE ZERO GRAPH OF RING Z_n USING PYTHON,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, 2024, doi: 10.30598/barekengvol18iss1pp0507-0516.

R. Meinawati, V. Y. Kurniawan, and N. A. Kurdhi, “Algorithm for Constructing Total Graph of Commutative Ring,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 8, no. 2, p. 351, Mar. 2024, doi: 10.31764/jtam.v8i2.19850.

G. Chartrand, Introductory graph theory. New York: Dover Books, 1985.

S. Skiena, Implementing Discrete Mathematics. Redwood City, Calif: Addison Wesley Publishing Company, 1990.

J. P. Mazorodze and S. Mukwembi, “Radius, Diameter and the Degree Sequence of a Graph,” Math. Slovaca, vol. 65, no. 6, 2015, doi: 10.1515/ms-2015-0084.

G. Chartrand, H. Jordon, V. Vatter, and P. Zhang, Graphs & Digraphs. 2023. doi: 10.1201/9781003461289.

Published
2024-07-31
How to Cite
[1]
V. Kurniawan and C. Ekasiwi, “ALGORITHM FOR CONSTRUCTING TRIPLE IDENTITY GRAPH OF RING Z_n USING PYTHON”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1629-1638, Jul. 2024.