DETECTING URBAN SLUMS IN DKI JAKARTA: A KOTAKU DATA APPROACH WITH ENSEMBLE METHODS
Abstract
Slums are one of the problems that often occur in urban areas, especially in developing countries. Slum settlements cause various social, economic, and environmental problems, including social injustice, infrastructure inefficiency, and a decrease in the population's quality of life. The PUPR Ministry representing the Indonesian government is trying to overcome slum settlements in Indonesia by creating the Cities Without Slums (KOTAKU) program. The KOTAKU program provides relevant and detailed data on slum settlements in Indonesia. Challenges arise when analyzing and utilizing KOTAKU data to identify slum indicators and map slums broadly. The method used in detecting slums using KOTAKU data is still conventional. Machine learning can be used to model data and classify or predict data by applying the Ensemble Method. This modeling will look for patterns or structures from the data that has been provided so that the detection results become more objective. This study aims to model slum indicators from KOTAKU data and detect urban slum settlements in DKI Jakarta. Modeling is done using the Random Forest algorithm. Data sourced from the KOTAKU program website established by the Ministry of PUPR RI. The results of the study show that the indicators that contribute most to the modeling of urban slum indicators in DKI Jakarta are the availability of safe access to drinking water and not fulfilling needs for drinking water. The slum indicator model without additions has good performance after going through the parameter tuning process with parameters ntree = 500 and mtry = 6. In contrast, the slum indicator model with additions has good performance if it does not go through a parameter tuning process or retains its initial parameters namely ntree = 500 and mtry = 4.
Downloads
References
E. Ranguelova, B. Weel, D. Roy, M. Kuffer, K. Pfeffer, and M. Lees, “Image based classification of slums, built-up and non-built-up areas in Kalyan and Bangalore, India,” Eur J Remote Sens, vol. 52, no. sup1, pp. 40–61, Mar. 2019, doi: 10.1080/22797254.2018.1535838.
United Nations, “Slum profile in human settlements,” 2009.
R. Mahabir, P. Agouris, A. Stefanidis, A. Croitoru, and A. T. Crooks, “Detecting and mapping slums using open data: a case study in Kenya,” Int J Digit Earth, vol. 13, no. 6, pp. 683–707, Jun. 2020, doi: 10.1080/17538947.2018.1554010.
United Nations, “The Millennium Development Goals Report 2015,” 2015.
A. Ezeh et al., “The history, geography, and sociology of slums and the health problems of people who live in slums,” The Lancet, vol. 389, no. 10068, pp. 547–558, Feb. 2017, doi: 10.1016/S0140-6736(16)31650-6.
Undang-Undang RI, Undang-Undang Republik Indonesia Nomor 1 Tahun 2022 Tentang Perumahan dan Kawasan Permukiman. 2011.
E. E. Surtiani, “Faktor-Faktor yang Mempengaruhi Terciptanya Kawasan Permukiman Kumuh di Kawasan Pusat Kota (Studi Kasus: Kawasan Pancuran, Salatiga),” Doctoral Dissertation, Universitas Diponegoro, Semarang, 2006.
B. Pujiyono, Arfian, and R. Subiyakto, “Pencegahan dan Peningkatan Kualitas Permukiman Kumuh di Kabupaten Bogor,” KRESNA: Jurnal Riset dan Pengabdian Masyarakat, vol. 1, no. 1, pp. 11–17, 2021, [Online]. Available: https://jurnaldrpm.budiluhur.ac.id/index.php/Kresna/
S. A. Jamna, “5 Kota Terbesar di Indonesia, Nomor 1 Jumlah Penduduk Sangat Padat.” [Online]. Available: https://economy.okezone.com/read/2023/06/26/470/2837034/5-kota-terbesar-di-indonesia-nomor-1-jumlah-penduduk-sangat-padat?page=2
R. Setyo Cahyono and J. Adianto, “Dampak Keterbatasan Akses Perumahan terhadap Kondisi Sosial Ekonomi Masyarakat Berpenghasilan Rendah di Permukiman Kumuh di DKI Jakarta,” JIMPS: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah, vol. 8, no. 3, pp. 1536–1542, 2023, doi: 10.24815/jimps.v8i3.25231.
Badan Pusat Statistik Republik Indonesia, Indikator Perumahan dan Kesehatan Lingkungan 2022. Jakarta, 2022.
UN Habitat, The state of the world’s cities 2006/2007. Earthscan, 2006.
Kementerian Pekerjaan Umum dan Perumahan Rakyat, “Tentang Program Kota Tanpa Kumuh (KOTAKU).” [Online]. Available: https://kotaku.pu.go.id/page/6880/tentang-program-kota-tanpa-kumuh-kotaku
Salmaa, “Rating Scale : Pengertian, Ciri-ciri, Bentuk, Kesalahan-kesalahan, dan Contoh.” [Online]. Available: https://penerbitdeepublish.com/rating-scale
R. Rahman, “Machine Learning: Membuat Masa Depan Lebih Cerah.” [Online]. Available: https://jayjay.co/machine-learning
E. Lutins, “Ensemble Methods in Machine Learning: What are They and Why Use Them?” [Online]. Available: https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
T. G. Dietterich, “Ensemble Methods in Machine Learning,” in In: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science, B. H. Springer, Ed., Springer, Berlin, Heidelberg, Jul. 2000, pp. 1–15. doi: https://doi.org/10.1007/3-540-45014-9_1.
D. C. Yadav and S. Pal, “Prediction of heart disease using feature selection and random forest ensemble method,” International Journal of Pharmaceutical Research, vol. 12, no. 4, pp. 56–66, Oct. 2020, doi: 10.31838/ijpr/2020.12.04.013.
H. Baradaran Rezaei, A. Amjadian, M. V. Sebt, R. Askari, and A. Gharaei, “An ensemble method of the machine learning to prognosticate the gastric cancer,” Ann Oper Res, vol. 328, no. 1, pp. 151–192, Sep. 2023, doi: 10.1007/s10479-022-04964-1.
C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, “Methodologies for data quality assessment and improvement,” ACM Comput Surv, vol. 41, no. 3, pp. 1–52, Jul. 2009, doi: 10.1145/1541880.1541883.
J. Han, M. Kamber, and J. Pei, Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems), 3rd ed. 2011.
Syaidatussalihah and Abdurahim, “Classification of Poverty Status using the Random Forest Algorithm,” EIGEN MATHEMATICS JOURNAL, vol. 5, no. 1, pp. 37–44, Jun. 2022, doi: 10.29303/emj.v5i1.133.
M. L. Suliztia, “PENERAPAN ANALISIS RANDOM FOREST PADA PROTOTYPE SISTEM PREDIKSI HARGA KAMERA BEKAS MENGGUNAKAN FLASK,” Thesis, Universitas Islam Indonesia, Yogyakarta, 2020.
M. J. Wulansari, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI SESEORANG TERKENA PENYAKIT DIABETES MELITUS MENGGUNAKAN REGRESI RANDOM FOREST (Studi Kasus : Data Diabetes di Virginia Amerika Serikat),” Thesis, Universitas Islam Indonesia, Yogyakarta, 2018.
A. Liaw and M. Wiener, “Classification and Regression by randomForest,” R News, vol. 2, no. 3, pp. 18–22, 2002, [Online]. Available: http://www.stat.berkeley.edu/
J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, pp. 281–305, 2012, [Online]. Available: http://scikit-learn.sourceforge.net.
R. Arthana, “Mengenal Accuracy, Precision, Recall dan Specificity serta yang diprioritaskan dalam Machine Learning.” [Online]. Available: https://rey1024.medium.com/mengenal-accuracy-precission-recall-dan-specificity-serta-yang-diprioritaskan-b79ff4d77de8
A. Müller and S. Guido, Introduction to Machine Learning with Python: A Guide For Data Scientist. Sebastopol, California: O’Reilly Media, Inc, 2016.
Copyright (c) 2024 Muhammad Muawwad MS, Rani Nooraeni, Ananda Galuh Intan Prasetya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.