PROVINCIAL CLUSTERING BASED ON EDUCATION INDICATORS: K-MEDOIDS APPLICATION AND K-MEDOIDS OUTLIER HANDLING

  • Octavia Rahmawati Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
  • Achmad Fauzan Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0000-0002-0533-5518
Keywords: Education, K-Medoids, Outlier Imputation

Abstract

K-Medoids is a clustering algorithm that is often used because of its robustness against outliers. In this research, the focus is to cluster provinces based on educational level through several assessment indicators. This is in line with improving the quality of education in point 4 of the National Sustainable Development Goals (SDGs), namely "Quality Education". One of the points of the National Sustainable Development Goals (SDGs) that will still be improved is "Quality Education" which is the 4th point. This is because the success of a country is determined by the quality of good education. The condition of education in Indonesia still overlaps, so it is necessary to do equal distribution of education through clustering. The purpose of this research is to provide the best cluster results according to the Silhouette Index, which then the results of the clustering can be used as a consideration for advancing education in areas that still need attention, through policies or programs that can be developed by educational observers. This research was conducted in 34 provinces in Indonesia. The data source is from Statistical Publications by BPS RI. The method used is K-Medoids, because in this study there were outliers found. In addition to natural K-Medoids, the researcher also wants to compare methods by implementing K-Medoids with outlier handling in the form of imputed mean values and K-Medoids with imputed min-max values. The Silhouette Index results and cluster formation for the three comparators were 0.24 with 2 clusters, 0.26 with 8 clusters and 0.25 with 9 clusters, respectively. What differentiates this research from previous research is the type of outlier handling. Generally, K-Medoids are very indifferent to the existence of outliers. K-medoids is a widely recognized and straightforward clustering approach. Nevertheless, the algorithm's effectiveness might occasionally decline as a result of local outliers and the random selection of beginning medoids

Downloads

Download data is not yet available.

References

N. Kamal Kaur, U. Kaur, and D. Singh, “K-Medoid Clustering Algorithm-A Review,” International Journal of Computer Application and Technology (IJCAT), vol. 1, no. 1, 2014, [Online]. Available: www.technopublications.com

P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm For Big Data,” Procedia Comput Sci, vol. 78, pp. 507–512, 2016, doi: 10.1016/j.procs.2016.02.095.

G. R. Suraya and A. W. Wijayanto, “Comparison of Hierarchical Clustering, K-Means, K-Medoids, and Fuzzy C-Means Methods in Grouping Provinces in Indonesia according to the Special Index for Handling Stunting,” Indonesian Journal of Statistics and Its Applications, vol. 6, no. 2, pp. 180–201, Aug. 2022, doi: 10.29244/ijsa.v6i2p180-201.

N. Sureja, B. Chawda, and A. Vasant, “An improved K-medoids clustering approach based on the crow search algorithm,” Journal of Computational Mathematics and Data Science, vol. 3, p. 100034, Jun. 2022, doi: 10.1016/j.jcmds.2022.100034.

P. H. Ramsey and P. P. Ramsey, “Optimal Trimming and Outlier Elimination,” Journal of Modern Applied Statistical Methods, vol. 6, no. 2, pp. 355–360, Nov. 2007, doi: 10.22237/jmasm/1193889660.

U. Pratap, C. Canudas-de-Wit, and F. Garin, “Outlier detection and trimmed-average estimation in network systems,” Eur J Control, vol. 60, pp. 36–47, Jul. 2021, doi: 10.1016/j.ejcon.2021.04.005.

S. Mousavi, F. Z. Boroujeni, and S. Aryanmehr, “Improving customer clustering by optimal selection of cluster centroids in K-means and K-medoids algorithms,” J Theor Appl Inf Technol, vol. 98, no. 18, pp. 3807–3814, 2020.

M. Adepeju, S. Langton, and J. Bannister, “Anchored k-medoids: a novel adaptation of k-medoids further refined to measure long-term instability in the exposure to crime,” J Comput Soc Sci, vol. 4, no. 2, pp. 655–680, Nov. 2021, doi: 10.1007/s42001-021-00103-1.

Md. K. Khan, S. Mahmud Ahmed, S. Sarker, and M. H. A. Khan, “K-Cosine-Medoids Clustering Algorithm,” in 2021 5th International Conference on Electrical Information and Communication Technology (EICT), IEEE, Dec. 2021, pp. 1–5. doi: 10.1109/EICT54103.2021.9733540.

C. Pramana, D. Chamidah, S. Suyatno, F. Renadi, and S. Syahruddin, “Strategies to Improved Education Quality in Indonesia: A Review,” Syaharuddin Syaharuddin Turkish Online Journal of Qualitative Inquiry (TOJQI), vol. 12, no. 3, pp. 1977–1994, 2021.

R. A. Tarigan, A. Saptono, and S. Muchtar, “Enhancing Indonesia’s Education Quality: Identifying and Addressing Key Challenges,” in 1st International Students Conference on Business, 2023.

N. W. A. Aprilia, I. G. A. M. Srinadi, and K. Sari, “Pengelompokan desa/kelurahan di kota Denpasar menurut indikator pendidikan,” E-Jurnal Matematika, vol. 5, no. 2, p. 38, May 2016, doi: 10.24843/MTK.2016.v05.i02.p119.

N. Dwi Tsoraya, I. A. Khasanah, M. Asbari, and A. Purwanto, “Pentingnya pendidikan karakter terhadap moralitas pelajar di lingkungan masyarakat era digital,” Literasi: Jurnal Manajemen Pendidikan, vol. 1, no. 1, pp. 7–12, 2023.

S. A. Nurfatimah, S. Hasna, and D. Rostika, “Membangun kualitas pendidikan di Indonesia dalam mewujudkan program Sustainable Development Goals (SDGs),” Jurnal Basicedu, vol. 6, no. 4, pp. 6145–6154, May 2022, doi: 10.31004/basicedu.v6i4.3183.

New Jersey Minority Educational Development, “International Education Database,” World Best Educational Systems.

P. Rosmana, S. Iskandar, N. Fadilah, N. Azhar, D. Oktavini, and A. C. Munte, “Upaya pemerataan pendidikan berkelanjutan di daerah 3T,” Attadib: Journal of Elementary Education, vol. 6, no. 2, pp. 405–418, 2022.

Badan Pusat Statistik, “Statistik Pendidikan 2021,” Jakarta, Nov. 2021.

Y. A. Priambodo and Y. J. Prasetyo, “Pemetaan penyebaran guru di provinsi Banten dengan menggunakan metode Spatial Clustering K-Means (studi kasus : wilayah provinsi Banten),” Indonesian Journal of Computing and Modeling, vol. 1, pp. 18–27, 2018.

D. A. Alodia, A. P. Fialine, D. Endriani, and E. Widodo, “Implementasi metode K-Medoids clustering untuk pengelompokan provinsi di Indonesia berdasarkan indikator pendidikan,” Sepren, vol. 2, no. 2, pp. 1–13, Dec. 2021, doi: 10.36655/sepren.v2i2.606.

R. A. Candra, Y. H. Chrisnanto, and P. N. Sabrina, “Segmentasi mahasiswa berdasarkan karakteristik pola belajar menggunakan metode K-Medoids clustering,” in Prosiding Sains Nasional dan Teknologi, Nov. 2022, p. 355. doi: 10.36499/psnst.v12i1.7047.

D. M. Sinaga, A. P. Windarto, and D. Hartama, “Analisis K-Medoids dalam pengelompokkan rasio murid dengan guru, murid dengan rombel, dan rasio rombel dengan kelas jenjang pendidikan SD dan SMP menurut provinsi,” Jurnal Riset Teknik Informatika dan Data Sains, vol. 1, no. 1, 2022, [Online]. Available: https://ejurnal.pdsi.or.id/index.php/jurtidas/index

N. Nurahman and D. D. Aulia, “klasterisasi pendidikan masyarakat untuk mengetahui daerah dengan pendidikan terendah menggunakan algoritma K-Means,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 5, no. 1, p. 38, Mar. 2023, doi: 10.36499/jinrpl.v5i1.7510.

M. A. Putri, A. Nazir, L. Handayani, and I. Afrianty, “Penerapan algoritma K-Medoids clustering untuk mengetahui pola penerima beasiswa Bank Indonesia provinsi Riau,” JUKI: Jurnal Komputer dan Informatika, vol. 5, no. 1, 2023.

A. Smiti, “A critical overview of outlier detection methods,” Comput Sci Rev, vol. 38, p. 100306, Nov. 2020, doi: 10.1016/j.cosrev.2020.100306.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis perbandingan metode Elbow dan Silhouette pada algoritma clustering K-medoids dalam pengelompokan produksi kerajinan Bali,” Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 9, no. 3, pp. 102–109, Nov. 2019, doi: 10.31940/matrix.v9i3.1662.

P. N. Safitri, R. Aristawidya, and S. B. Faradilla, “Klasterisasi faktor-faktor kemiskinan di provinsi Jawa Barat menggunakan K-Medoids clustering,” Journal of Mathematics Education and Science, vol. 4, no. 2, pp. 75–80, Oct. 2021, doi: 10.32665/james.v4i2.242.

R. A. Wibowo, K. Nisa, H. Venelia, and W. Warsono, “Robust clustering of Covid-19 pandemic worldwide,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 2, pp. 687–694, Jun. 2022, doi: 10.30598/barekengvol16iss2pp687-694.

E. T. Ena Tasia and M. Afdal, “Perbandingan algoritma K-Means dan K-Medoids untuk clustering daerah rawan banjir di kabupaten Rokan Hilir,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 3, no. 1, pp. 65–73, Mar. 2023, doi: 10.57152/ijirse.v3i1.523.

G. KIR, A. ÜLKE KESKİN, and U. ZEYBEKOĞLU, “Clustering of precipitation in the black sea region with by Fuzzy C-Means and silhouette index analysis,” Black Sea Journal of Engineering and Science, vol. 6, no. 3, pp. 210–218, Jul. 2023, doi: 10.34248/bsengineering.1296734.

F. N. Aini, S. Palgunadi, and R. Anggrainingsih, “Clustering business process model petri net dengan complete linkage,” Jurnal Itsmart, vol. 3, no. 2, 2014.

LLDIKTI V, “Sebaran Perguruan Tinggi dan Program Studi LLDIKTI V,” https://lldikti5.id/evira/.

S. Sugiyanto, “Yogyakarta kola pendidikan dan ekonomi alternatif,” Cakrawala Pendidikan, 2004.

S. Haryono, “Analisis brand image Yogyakarta sebagai kota pelajar,” Jurnal Ilmu Komunikasi, vol. 7, no. 3, 2009, [Online]. Available: www.pdffactory.com

F. R. R. Mega, “Karakter Yogyakarta sebagai kota pelajar, kota budaya, kota wisata, dan Jogja never ending Asia,” Yogyakarta, 2003.

E. A. N. Fajrina, “Analysis cluster robust using k-medoids method in the data containing outlier,” Final Task, Universitas Lampung, Lampung, 2021.

D. A. Rahmah, “Analisis klaster berdasarkan indikator kesejahteraan rakyat menggunakan metode Self Organizing Maps (SOM),” Final Task, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2022.

A. R. Zaidah, C. I. Septiarani, S. Nisa, A. Yusuf, and N. Wahyudi, “Komparasi algoritma k-means, k-medoid, agglomeartive clustering terhadap genre spotify,” Jurnal Ilmiah Ilmu Komputer, vol. 7, no. 1, 2021, [Online]. Available: https://ejournal.fikom-unasman.ac.id

Published
2024-05-25
How to Cite
[1]
O. Rahmawati and A. Fauzan, “PROVINCIAL CLUSTERING BASED ON EDUCATION INDICATORS: K-MEDOIDS APPLICATION AND K-MEDOIDS OUTLIER HANDLING”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 1167-1178, May 2024.