THE NUMERICAL APPROXIMATION OF STATIONARY WAVE SOLUTIONS FOR TWO-COMPONENT SYSTEM OF NONLINEAR SCHRÖDINGER EQUATIONS BY USING GENERALIZATION PETVIASHVILI METHOD

  • Nuzla Af’idatur Robbaniyyah Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia
  • Jann-Long Chern Department of Mathematics, National Taiwan Normal University, Taiwan
  • Abdurahim Abdurahim Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia https://orcid.org/0009-0001-4263-8833
Keywords: Petviashvili Method, Stationary wave Solutions, Nonlinear Schrödinger, Equations

Abstract

The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with power-law nonlinearity: , where  is a positive definite and self-adjoint operator and  is constant. Due to the case being a system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for a two-component system of Nonlinear Schr dinger Equations (NLSE) for 2-D.

Downloads

Download data is not yet available.

References

K. Hosseini, E. Hincal, S. Salahshour, M. Mirzazadeh, K. Dehingia, and B. J. Nath, “On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation,” Optik (Stuttg)., vol. 272, p. 170215, 2023, doi: https://doi.org/10.1016/j.ijleo.2022.170215.

M. R. Haizar, M. Rizki, N. A. Robbaniyyah, B. N. Syechah, S. Salwa, and L. Awalushaumi, “Numerical Solution of the Korteweg-De Vries Equation Using Finite Difference Method,” Eig. Math. J., vol. 7, no. 1, pp. 1–7, 2024, doi: https://doi.org/10.29303/emj.v7i1.190.

J. Cuevas--Maraver, P. G. Kevrekidis, A. Saxena, A. Comech, and R. Lan, “Stability of solitary waves and vortices in a 2D nonlinear Dirac model,” Phys. Rev. Lett., vol. 116, no. 21, p. 214101, 2016, doi: https://doi.org/10.1103/PhysRevLett.116.214101.

J. J. Garcia-Ripoll and V. M. Pérez-Garcia, “Optimizing Schrödinger functionals using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,” SIAM J. Sci. Comput., vol. 23, no. 4, pp. 1316–1334, 2001, doi: https://doi.org/10.1137/S1064827500377721.

J. Yang and T. I. Lakoba, “Convergence and acceleration of imaginary-time evolution methods for solitary waves in arbitrary spatial dimensions,” Submitt. to SIAM J. Sci. Comput.

V. S. Shchesnovich and S. B. Cavalcanti, Rayleigh functional for nonlinear systems. 2004.

W. Bao and Q. Du, “Computing the ground state solution of Bose--Einstein condensates by a normalized gradient flow,” SIAM J. Sci. Comput., vol. 25, no. 5, pp. 1674–1697, 2004, doi: https://doi.org/10.1137/S1064827503422956.

V. A. Dougalis, A. Durán, and D. E. Mitsotakis, “Numerical approximation of solitary waves of the Benjamin equation,” Math. Comput. Simul., vol. 127, pp. 56–79, 2016, doi: https://doi.org/10.1016/j.matcom.2012.07.008.

N. A. Robbaniyyah, “Modifikasi Metode Iterasi Petviashvili Untuk Menentukan Gelombang Stasioner Dari Persamaan Bertipe Schrödinger Nonlinear,” Universitas Brawijaya, 2014.

T. I. Lakoba and J. Yang, “A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity,” J. Comput. Phys., vol. 226, no. 2, pp. 1668–1692, 2007, doi: https://doi.org/10.1016/j.jcp.2007.06.009.

V. I. Petviashvili, “Equation of an extraordinary soliton,” Fiz. plazmy, vol. 2, pp. 469–472, 1976.

V. I. Petviashvili and O. A. Pohkotelov, Solitary Waves in Plasmas and in the Atmosphere. Routledge, 2016.

A. R. Nuzla, “The Generalized Petviashvili Iteration Method for Determined Stationary Waves Solutions of Nonlinear Equations with,” Eig. Math. J., vol. 5, no. 2, pp. 45–53, 2022, doi: https://doi.org/10.29303/emj.v5i2.146.

J. Vahidi, S. M. Zekavatmand, H. Rezazadeh, M. Inc, M. A. Akinlar, and Y.-M. Chu, “New solitary wave solutions to the coupled Maccari’s system,” Results Phys., vol. 21, p. 103801, 2021, doi: https://doi.org/10.1016/j.rinp.2020.103801.

T. I. Lakoba, “Conjugate Gradient method for finding fundamental solitary waves,” Phys. D Nonlinear Phenom., vol. 238, no. 23–24, pp. 2308–2330, 2009, doi: https://doi.org/10.1016/j.physd.2009.09.013.

J. Wei and W. Yao, “Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,” Commun. Pure Appl. Anal, vol. 11, no. 3, pp. 1003–1011, 2012, doi: http://dx.doi.org/10.3934/cpaa.2012.11.

T.-C. Lin and J. Wei, “Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations,” Phys. D Nonlinear Phenom., vol. 220, no. 2, pp. 99–115, 2006, doi: https://doi.org/10.1016/j.physd.2006.07.009.

Published
2024-07-31
How to Cite
[1]
N. Robbaniyyah, J.-L. Chern, and A. Abdurahim, “THE NUMERICAL APPROXIMATION OF STATIONARY WAVE SOLUTIONS FOR TWO-COMPONENT SYSTEM OF NONLINEAR SCHRÖDINGER EQUATIONS BY USING GENERALIZATION PETVIASHVILI METHOD”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1739-1752, Jul. 2024.