PREDICTION OF UNIT VALUE INDEX OF EXPORTS OF SITC 897 JEWELRY AND PRECIOUS GOODS GROUP IN INDONESIA
Abstract
Export is an international trade activity that plays an important role in the economic progress in Indonesia. One of Indonesia's leading commodities that dominate the export market is jewelry. In export activities, the export unit value index is an important component that serves to describe the development of export commodity prices. This unit value index always changes every time and fluctuates. This research conducts a comparative analysis of the performance of parametric method, non-parametric method, and machine learning, specifically, ARIMA, Fourier series estimator, and Support Vector Regression (SVR). This study aims to evaluate the effectiveness of various methods in improving prediction accuracy for the unit value index of the SITC code 897 in Indonesia. The research data used is secondary data including monthly export unit value index data with SITC code 897 in Indonesia obtained from the Central Bureau of Statistics. The data divided into 90% training data and 10% testing data. The methods used in this analysis are ARIMA, Fourier series estimator, and SVR. The best model obtained from each method is ARIMA (1,1,1) with MAPE of 10.92%, Fourier series estimator with MAPE of 8.47%, and an SVR RBF kernel function with MAPE of 3.73%. The results of this study obtained the best method for predicting the unit value index of SITC code 897 is SVR with an RMSE value of 8.288 and very good prediction accuracy.
Downloads
References
F. Amelia, “Analisis Strategi Pemasaran Dalam Meningkatkan volume Penjualan Dalam Perspektif Ekonomi Islam (studi kasus pada Toko AGS kuningan),” Chang. Think Jounal, vol. 1, no. 1, pp. 50–59, 2018.
A. Wardhana, “Analisis Faktor-Faktor yang Mempengaruhi Ekspor Nonmigas Indonesia ke Singapura Tahun 1990-2010,” J. Manaj. Dan Akunt., vol. 12, no. 2, pp. 99–102, 2011.
K. A. S. Pramana and L. G. Meydianawathi, “Variabel-Variabel yang Mempengaruhi Ekspor Nonmigas Indonesia ke Amerika Serikat,” J. Ekon. Kuantitatif Terap., vol. 6, no. 2, pp. 98–105, 2013.
L. Hugida and S. Sofian, “Analisis faktor-faktor yang mempengaruhi volatilitas harga saham (Studi pada perusahaan yang terdaftar dalam indeks LQ45 periode 2006–2009),” Universitas Diponegoro, Semarang, 2011.
B. P. Statistik, “Indeks Unit Value Ekspor Menurut Kode SITC Bulan November 2022,” Jakarta, 2022.
M. A. D. Prabayanthi and I. A. N. Saskara, “ANALISIS DAYA SAING DAN FAKTOR-FAKTOR YANG MEMPENGARUHI EKSPOR PERHIASAN INDONESIA,” E-Jurnal Ekon. Pembang., vol. 10, no. 7, pp. 3075–3103, 2021.
E. S. A. S. Agustin and S. Edhie, Kajian Tengah Tahun INDEF 2022: Reformulasi Kemandirian Ekonomi di Tengah Dinamika Global. INDEF, 2022.
C. F. F. Purwoko, S. Sediono, T. Saifudin, and M. F. F. Mardianto, “Prediksi Harga Ekspor Non Migas di Indonesia Berdasarkan Metode Estimator Deret Fourier dan Support Vector Regression,” Inferensi, vol. 6, no. 1, pp. 45–55, 2023.
C. F. F. Purwoko, Sediono, T. Saifudin, and M. F. F. Mardianto, “Prediksi Harga Ekspor Non Migas di Indonesia Berdasarkan Metode Estimator Deret Fourier dan Support Vector Regression,” Inferensi, vol. 6, no. 1, pp. 45–55, 2023.
F. Danitasari, “Perbandingan Prediksi Sifat Hujan Bulanan antara Analisis Komponen Utama Model Arima dan Metode Probabilitas di Stasiun Meteorologi Pongtiku Tana Toraja,” J. Meteorol. Klimatologi dan Geofis., vol. 2, no. 2, pp. 207–215, 2015.
A. Lusiani and E. Habinuddin, “Pemodelan Autoregressive Integrated Moving Average (ARIMA) Curah Hujan di Kota Bandung,” J. Sigma-Mu, vol. 3, no. 2, pp. 9–25, 2011.
W. W. S. Wei, Time Series Analysis: Univariate and Multivariate Methods, Second Edi. New York: Pearson Adisson Wesley, 2006.
Y. Susanto, “Pemodelan Curah Hujan dengan Pendekatan Model ARIMA, Feed Forward Neural Network dan Hybrid (ARIMA-NN) di Banyuwangi,” J. Sains Dan Seni ITS, vol. 5, no. 2, pp. 145–150, 2016.
Budiantara and I. Nyoman, “Penelitian Bidang Regresi Spline Menuju Terwujudnya Penelitian Statistika yang Mandiri dan Berkarakter,” 2011.
A. A. Anandari, Analisis Regresi Deret Fourier: Aplikasi Data Curah Hujan. Jawa Barat: CV Jejak (Jejak Publisher), 2023.
N. Chamidah and B. Lestari, Analisis Regresi Nonparametrik dengan Perangkat Lunak R. Surabaya: Airlangga University Press., 2022.
A. J. Smola and B. Scholkopf, “A Tutorial on Support Vector Regression,” Stat. Comput., vol. 12, pp. 199–222, 2004.
R. P. Furi, J. Jondri, and D. Saepudin, “Prediksi Financial Time Series Menggunakan Independent Component Analysis Dan Support Vector Regression. Studi Kasus: Ihsg Dan Jii,” eProceedings Eng., vol. 2, no. 2, 2015.
X. Guo, Y. Gao, Y. Li, D. Zheng, and D. Shan, “Short-Term Household Load Forecasting Based on Long-and Short-Term Time Series Network,” Energy Reports, vol. 7, pp. 58–64, 2021.
M. Merfin and R. S. Oetama, “Prediksi Harga Saham Perusahaan Perbankan Menggunakan Regresi Linear Studi Kasus Bank BCA Tahun 2015-2017,” Ultim. J. Tek. Inform., vol. 11, no. 1, pp. 11–15, 2019, doi: 10.31937/ti.v11i1.1239.
J. J. M. Moreno, A. P. Pol, A. S. Abad, and B. C. Blasco, “Using the R-MAPE Index as Resistant Measure of Forecast Accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013.
P. C. Chang, Y. W. Wang, and C. H. Liu, “The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting,” Expert Syst. with Appl., vol. 32, no. 1, pp. 86–96, 2007.
R. D. Khoirunnisa, W. Wibowo, and A. Suharsono., “Nonlinearity Test on Time Series Data Case Study: The Number of Foreign Tourist,” 2016.
Copyright (c) 2024 Grace Lucyana Koesnadi, Bagas Shata Pratama, Dzuria Hilma Qurotu Ain, Elly Pusporani, M. Fariz Fadillah Mardianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.