SPATIALLY INFORMED INSIGHTS: MODELING PERCENTAGE POVERTY IN EAST JAVA PROVINCE USING SEM WITH SPATIAL WEIGHT VARIATIONS

  • Ashabul Akbar Maulana Department of Statistics, Faculty of Mathematica and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0000-0002-2575-3688
  • Achmad Fauzan Department of Statistics, Faculty of Mathematica and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0000-0002-0533-5518
Keywords: Poverty, Spatial Weight Matrix, Spatial Error Model

Abstract

The East Java Province stands as one of Indonesia's regions grappling with a notably elevated poverty rate, accounting for 11.32% of the populace. A strategic approach employed to comprehend and redress this issue involves the application of spatial analysis, wherein spatial factors are intricately integrated into the modeling and cartographic representation of poverty data. The primary objective of this research is to discern the principal determinants influencing the incidence of poverty in East Java Province, employing data reflective of the population's poverty percentages within the province for the year 2021. The study incorporates six pivotal variables, namely: the population poverty rate, open unemployment rate, labor force participation rate, average years of schooling, adjusted per capita expenditure, and the gross regional domestic product (GRDP), predicated on adjusted expenditure. Diverse weighting schemes are applied based on both distance (1) and contiguity (2). The optimal predictive model utilized is the Spatial Error Model (SEM) incorporating a Distance Band Weighing (DBW) mechanism with a designated maximum distance ( ) of 75000 meters. Outcomes indicate that the variable wielding the most substantial influence on the poverty percentage in East Java Province is the average years of schooling. Specifically, an increase in the pursuit of formal education manifests as a negative correlate to the poverty percentage, implying an inverse relationship. Moreover, the SEM model adheres to the requisite assumptions, encompassing (1) the normality of residuals, (2) homogeneity of residuals, and (3) non-spatial autocorrelation of residuals. Comparative analyses reveal that the SEM model utilizing DBW yields diminished values for MAE, MSE, RMSE, AIC, and MAPE in comparison to its linear regression counterpart. Furthermore, the pseudo- values obtained from the SEM surpass those derived from the linear regression model. Rigorous likelihood ratio tests underscore substantial disparities between the SEM and linear regression models, with the former proving more efficient and markedly enhancing the model's explanatory prowess concerning variations in the dataset.

Downloads

Download data is not yet available.

References

R. T. Ashari and M. Athoillah, “Analisis pengaruh tingkat pengangguran terbuka, tingkat partisipasi angkatan kerja, upah minimum, indeks pembangunan manusia, pertumbuhan ekonomi dan jumlah penduduk terhadap kemiskinan di kawasan tapal kuda,” Journal of Development Economic and Social Studies, vol. 2, no. 2, pp. 313–326, 2023, doi: 10.21776/jdess.2023.02.2.08.

A. Efendi, N. W. S. Wardhani, R. Fitriani, and E. Sumarminingsih, Analisis Regresi: Teori dan Aplikasi dengan R. Malang: UB Press, 2020.

M. Firdaus, T. Irawan, F. S. Ahmad, H. Siregar, D. Siswara, and R. Jakariya, Aplikasi Model Ekonometrika dengan R Studio, 1st ed. IPB Press, 2021.

A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. Bogor: IPB Press, 2020.

J. Medina Ariza and R. Solymosi, Crime Mapping and Spatial Data Analysis using R. Boca Raton: Chapman and Hall/CRC, 2023. doi: 10.1201/9781003154914.

R. E. Caraka and H. Yasin, Geographically Weighted Regression (GWR) Sebuah Pendekatan Regresi Geografis. MOBIUS, 2017.

F. Ramdani, Geospatial Data Science: Geospatial Data Processing and Analysis using R. Malang: Pena Persada, 2021.

A. O. Sihombing, “Spatial analysis of poverty in North Sumatera,” Journal of Analytical Research, vol. 1, no. 1, pp. 64–77, 2022.

A. Tumanggor and E. Simamora, “Pemodelan faktor-faktor yang mempengaruhi indeks pembangunan manusia di Sumatera Utara menggunakan regresi spasial,” Jurnal riset rumpun matematika dan ilmu pengetahuan alam (JURRIMIPA), vol. 2, no. 2, 2023.

I. Y. Safitri, M. A. Tiro, and Ruliana, “Spatial regression analysis to see factors affecting food security at district level in South Sulawesi province,” ARRUS journal of mathematics and applied science, vol. 2, no. 2, pp. 60–72, Mar. 2022, doi: 10.35877/mathscience740.

S. Yulianto and A. A. Cika, “Model tingkat kemiskinan provinsi Jawa Timur dengan analisis regresi spasial,” in Proceeding of Seminar nasional matematika dan pendidikan matematika (6th SENATIK), Semarang: Universitas PGRI Semarang, 2021.

R. A. Jelita, “Penerapan matriks pembobot jarak K-Nearest Neighbour dan Distance Band dalam regresi panel spasial SAR dan SEM pada gini rasio di provinsi Jawa Timur tahun 2015-2017,” Universitas Brawijaya, Malang, 2020.

E. Wahyu Azizah, Sudarti, and H. Kusuma, “Pengaruh pendidikan, pendapatan perkapita dan jumlah penduduk terhadap kemiskinan di provinsi Jawa Timur,” Jurnal Ilmu Ekonomi, vol. 2, no. 1, pp. 167–180, 2018.

Muryani and P. A. Pamungkas, “The impact of unemployment rate, labor force, capital, inflation rate, and government expenditure on economic growth in Indonesia,” American Journal of Engineering Research (AJER, vol. 7, no. 3, pp. 109–119, 2018, [Online]. Available: www.ajer.org

S. Azizi, “The impacts of workers’ remittances on human capital and labor supply in developing countries,” Econ Model, vol. 75, pp. 377–396, Nov. 2018, doi: 10.1016/j.econmod.2018.07.011.

S. Alam, Y. Ansari, N. Sha, and K. Khan, “The influence of unemployment and labor force participation rates on economic development in GCC countries: A cointegration approach,” Journal of infrastructure, policy and development, vol. 8, no. 2, Dec. 2023, doi: 10.24294/jipd.v8i2.2962.

I. A. A. Widiantari, H. Sahri, and I. Suriadi, “The influence of labor force participation rate, total population and minimum wage on unemployment in West Nusa Tenggara Province in 2017-2021,” Journal of Economics, Finance and Management Studies, vol. 06, no. 05, May 2023, doi: 10.47191/jefms/v6-i5-46.

S. J. Rey, D. Arribas-Bel, and L. J. Wolf, Geographic data science with python. CRC Press, 2023.

A. Djuraidah and R. Anisa, Analisis statistika untuk data geospasial: dengan ilustrasi penerapan menggunakan R. Bogor: IPB Press, 2023.

M. Sarrias, “Notes on spatial econometrics,” Del Maure, 2020.

T. Purwaningsih, “Kajian pengaruh matriks pembobot spasial dalam model data panel spasial,” Thesis, IPB University, Bogor, 2014.

S. Shekar and H. Xiong, Encyclopedia of GIS. SpringerScince+Buisiness Media, 2007.

D. Anggraeni, A. Prahutama, and S. Andari, “Aplikasi Generalized Space Time Autoregressive (GSTAR) pada pemodelan volume kendaraan masuk tol semarang,” Media Statistika, vol. 6, no. 2, Dec. 2013, doi: 10.14710/medstat.6.2.61-70.

L. Anselin, “Lagrange Multiplier test diagnostics for spatial dependence and spatial heterogeneity,” Geogr Anal, vol. 20, no. 1, pp. 1–17, 1988, doi: 10.1111/j.1538-4632.1988.tb00159.x.

P. Burridge, “On the cliff‐ord test for spatial correlation,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 42, no. 1, pp. 107–108, Sep. 1980, doi: 10.1111/j.2517-6161.1980.tb01108.x.

L. Anselin, A. K. Bera, R. Florax, and M. J. Yoon, “Simple diagnostic tests for spatial dependence,” Reg Sci Urban Econ, vol. 26, no. 1, pp. 77–104, Feb. 1996, doi: 10.1016/0166-0462(95)02111-6.

H. H. Kelejian and D. P. Robinson, “Spatial autocorrelation,” Reg Sci Urban Econ, vol. 22, no. 3, pp. 317–331, Sep. 1992, doi: 10.1016/0166-0462(92)90032-V.

A. Somantri, Aplikasi statistika dalam penelitian. Bandung: Bandung Pubisher, 2006.

A. Supangat, Statistika : dalam kajian deskriptif, inferensi, dan nonparametrik. Jakarta: Kencana Pernada Media, 2010.

J. P. Elhorst, “Spatial panel data models,” in Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, M. M. Fischer and A. Getis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-03647-7.

K. Kopczewska, Applied Spatial Statistics and Econometrics. Routledge, 2020. doi: 10.4324/9781003033219.

S. F. Higazi, D. H. Abdel-Hady, and S. A. Al-Oulfi, “Application of spatial regression models to income poverty ratios in middle delta contiguous counties in Egypt,” Pakistan Journal of Statistics and Operation Research, vol. 9, no. 1, p. 93, Feb. 2013, doi: 10.18187/pjsor.v9i1.272.

G. Chi and J. Zhu, “Spatial regression models for demographic analysis,” Popul Res Policy Rev, vol. 27, no. 1, pp. 17–42, 2008, [Online]. Available: http://www.jstor.org/stable/41217935

F. C. Cardoso, R. A. Berri, G. Lucca, E. N. Borges, and V. L. D. de Mattos, “Normality tests: a study of residuals obtained on time series tendency modeling,” Exacta, Apr. 2023, doi: 10.5585/2023.22928.

A. G. Klein, C. Gerhard, R. D. Büchner, S. Diestel, and K. Schermelleh-Engel, “The detection of heteroscedasticity in regression models for psychological data,” Psychol Test Assess Model, vol. 58, no. 4, p. 567, 2016.

Y. Chen, “An analytical process of spatial autocorrelation functions based on Moran’s index,” PLoS One, vol. 16, no. 4, p. e0249589, 2021.

D. N. Gujarati, Basic Econometrics, 4th edition. Tata McGraw Hill, 2004.

C. Sammut and G. I. Webb, Eds., Encyclopedia of machine learning. Boston, MA: Springer US, 2010. doi: 10.1007/978-0-387-30164-8.

A. K. Sahoo, S. Mallik, C. Pradhan, B. S. P. Mishra, R. K. Barik, and H. Das, “Intelligence-based health recommendation system using Big Data analytics,” in Big Data Analytics for Intelligent Healthcare Management, Elsevier, 2019, pp. 227–246. doi: 10.1016/B978-0-12-818146-1.00009-X.

A. A. Grasa, Econometric Model Selection: A New Approach, vol. 16. Dordrecht: Springer Netherlands, 1989. doi: 10.1007/978-94-017-1358-0.

G. A. J. Hemmert, L. M. Schons, J. Wieseke, and H. Schimmelpfennig, “Log-likelihood-based Pseudo- R 2 in Logistic Regression,” Sociol Methods Res, vol. 47, no. 3, pp. 507–531, Aug. 2018, doi: 10.1177/0049124116638107.

C. D. Lewis, Industrial and business forecasting methods. ‎ Butterworth-Heinemann, 1982.

J. Sudrajat, S. Wira Rizki, and H. Perdana, “Perbandingan model regresi parametrik eksponensial dan Weibull pada data survival tersensor interval,” Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster), vol. 07, no. 3, pp. 231–238, 2018.

N. Shrestha, “Detecting multicollinearity in regression analysis,” Am J Appl Math Stat, vol. 8, no. 2, pp. 39–42, Jun. 2020, doi: 10.12691/ajams-8-2-1.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression Analysis, Sixth. John Wiley and Sons, Inc, 2021.

K. Chang, An Introduction to Geographic Information Systems, 9th ed. McGraw-Hill Education, 2018. doi: 10.1201/b12440-10.

W. R. Tobler, “A Computer Movie Simulating Urban Growth in the Detroit Region,” Econ Geogr, vol. 46, p. 234, Jun. 1970, doi: 10.2307/143141.

S. Axler, Undergraduate texts in mathematics linear algebra done right, 4th edition. San Frascisco: Springer, 2024.

H. Yasin, B. Waryanto, and A. R. Hakim, Regresi Spasial: Aplikasi dengan R. Ponorogo: WADE Group, 2020.

T. Hofmarcher, “The effect of education on poverty: A European perspective,” Econ Educ Rev, vol. 83, p. 102124, Aug. 2021, doi: 10.1016/j.econedurev.2021.102124.

P. Brown and D. James, “Educational expansion, poverty reduction and social mobility: Reframing the debate,” Int J Educ Res, vol. 100, p. 101537, 2020, doi: 10.1016/j.ijer.2020.101537.

J. B. G. Tilak, “Education and Poverty,” Journal of Human Development, vol. 3, no. 2, pp. 191–207, Jul. 2002, doi: 10.1080/14649880220147301.

S. N. Cave, M. Wright, and S. von Stumm, “Change and stability in the association of parents’ education with children’s intelligence,” Intelligence, vol. 90, p. 101597, Jan. 2022, doi: 10.1016/J.INTELL.2021.101597.

T. Wendling Gonçalves de Oliveira, R. Schmitz, J. Danilo Zea Camaño, A. Paula Dalla Corte, and C. Roberto Sanquetta, “Behavior of the diametric distribution of ecological groups in a mixed ombrophilous forest fragment,” Floresta, no. 3, pp. 413–424, 2018, doi: 10.5380/rf.v48i3.

D. T. Utari, Analisis regresi terapan dengan R, 2nd ed. Yogyakarta: Universitas Islam Indonesia, 2023.

Published
2024-05-25
How to Cite
[1]
A. Maulana and A. Fauzan, “SPATIALLY INFORMED INSIGHTS: MODELING PERCENTAGE POVERTY IN EAST JAVA PROVINCE USING SEM WITH SPATIAL WEIGHT VARIATIONS”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 1317-1332, May 2024.