COMPARISON OF DOUBLE EXPONENTIAL SMOOTHING AND FUZZY TIME SERIES MARKOV CHAIN IN FORECASTING FOREIGN TOURIST ARRIVALS

  • Darvi Mailisa Putri Mathematics Study Program, Faculty of Science and Technology, UIN Imam Bonjol Padang, Indonesia
  • Afrimayani Afrimayani Mathematics Study Program, Faculty of Science and Technology, UIN Imam Bonjol Padang, Indonesia
  • Lilis Harianti Hasibuan Mathematics Study Program, Faculty of Science and Technology, UIN Imam Bonjol Padang, Indonesia https://orcid.org/0000-0002-7101-6638
  • Fitri Rahmah Ul Hasanah Department of Economics, Faculty of Economics and Bussiness, Universitas Andalas, Indonesia https://orcid.org/0009-0006-4897-2425
  • Miftahul Jannah Mathematics Study Program, Faculty of Science and Technology, UIN Imam Bonjol Padang, Indonesia https://orcid.org/0009-0007-3112-6043
Keywords: DES, Forecasting, Foreign tourist Arrivals, FTS-MC

Abstract

Foreign tourist arrivals are one of the factors that make a positive contribution to a country's economy, especially the addition of foreign exchange. This activity is important for the tourism industry and the government to make policies for progress in the tourism sector. This research aims to forecast data on foreign tourist arrivals, especially land routes. This data set, which is a monthly time series covering the period from January 2018 to October 2023, is sourced from the Central Statistics Agency (BPS). The DES technique is a method that quickly adapts to changes in data patterns and can lessen the impacts of random fluctuations, resulting in more stable estimates. Meanwhile, the FTS-MC approach can handle large data variations by utilizing fuzzy sets. Furthermore, combining fuzzy time series with Markov Chains increases forecast accuracy by taking into account state transitions and probability. The research demonstrates that the DES method produces the MAPE value of 0.108530 or 10% which is obtained from the alpha value of 0.9 and beta 0.2. The MAPE 0.108530 means that the ability of the forecasting model is classified as a good category. In the FTS-MC method, the forecast data is close to the actual data. This is indicated by the MAPE value obtained of 0.086850 or 8%, which means that the ability of the forecasting model is very good. Based on the analysis of the two methods, it is concluded that the FTS-MC method is better applied to data on land-based foreign tourist arrivals.

Downloads

Download data is not yet available.

References

A. L. Marie and R. E. Widodo, “Analisis Faktor Kunjungan Wisatawan Mancanegara dan Tingkat Penginapan Hotel Terhadap Penerimaan Pendapatan Asli Daerah (PAD) Sub Sektor Pariwisata pada Industri Pariwisata di Daerah Istimewa Yogyakarta (DIY) Tahun,” vol. 25, no. 3, 2020.

S. K. Lee, “Quality differentiation and conditional spatial price competition among hotels,” Tourism Management, vol. 46, pp. 114–122, Feb. 2015, doi: 10.1016/j.tourman.2014.06.019.

F.-L. Chu, “Using a logistic growth regression model to forecast the demand for tourism in Las Vegas,” Tourism Management Perspectives, vol. 12, pp. 62–67, Oct. 2014, doi: 10.1016/j.tmp.2014.08.003.

L. T. Tung, “Does exchange rate affect the foreign tourist arrivals? Evidence in an emerging tourist market,” 10.5267/j.msl, pp. 1141–1152, 2019, doi: 10.5267/j.msl.2019.5.001.

P.-F. Pai, K.-C. Hung, and K.-P. Lin, “Tourism demand forecasting using novel hybrid system,” Expert Systems with Applications, vol. 41, no. 8, pp. 3691–3702, Jun. 2014, doi: 10.1016/j.eswa.2013.12.007.

J. Naim, A. Hidayat, and S. Y. Bustami, “Strategi Gastrodiplomasi Thailand dalam Sektor Pariwisata untuk Meningkatkan Kunjungan Wisatawan Mancanegara (Studi Kasus Gastrodiplomasi Thailand di Indonesia),” IJGD, vol. 4, no. 1, pp. 35–45, Jun. 2022, doi: 10.29303/ijgd.v4i1.46.

T. Havranek and A. Zeynalov, “Forecasting tourist arrivals: Google Trends meets mixed-frequency data,” Tourism Economics, vol. 27, no. 1, pp. 129–148, Feb. 2021, doi: 10.1177/1354816619879584.

M. I. Prastyadewi, I. G. L. P. Tantra, and P. Y. Pramandari, “Digitization And Prediction Of The Number Of Tourist Visits In The Bali Province,” Jurnal Ekonomi & Bisnis JAGADITHA, vol. 10, no. 1, pp. 89–97, Mar. 2023, doi: 10.22225/jj.10.1.2023.89-97.

B. S. Pratama, A. F. Suryono, N. Auliyah, and N. Chamidah, “COMPARISON OF LOCAL POLYNOMIAL REGRESSION AND ARIMA IN PREDICTING THE NUMBER OF FOREIGN TOURIST VISITS TO INDONESIA,” BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0053–0064, Mar. 2024, doi: 10.30598/barekengvol18iss1pp0043-0052.

A. Pranata, M. Akbar Hsb, T. Akhdansyah, and S. Anwar, “Penerapan Metode Pemulusan Eksponensial Ganda dan Tripel Untuk Meramalkan Kunjungan Wisatawan Mancanegara ke Indonesia,” JDA, vol. 1, no. 1, pp. 32–41, Sep. 2018, doi: 10.24815/jda.v1i1.11873.

C. V. Hudiyanti, F. A. Bachtiar, and B. D. Setiawan, “Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai”.

D. M. Putri, F. R. U. Hasanah, L. H. Hasibuan, and M. Jannah, “PREDIKSI JUMLAH PENUMPANG PESAWAT PADA MASA COVID-19 DENGAN METODE EXPONENTIAL SMOOTHING,” MATH EDUCA, vol. 6, no. 1, pp. 20–28, Apr. 2022.

D. M. Putri and Aghsilni, “Estimasi Model Terbaik Untuk Peramalan Harga Saham PT. Polychem Indonesia Tbk. dengan ARIMA,” MAp Journal: Mathematics and Applications, vol. 1, pp. 1–12, Dec. 2019.

K. N. Khikmah, K. Sadik, and I. Indahwati, “TRANSFER FUNCTION AND ARIMA MODEL FOR FORECASTING BI RATE IN INDONESIA,” BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1359–1366, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1359-1366.

L. H. Hasibuan, S. Musthofa, D. M. Putri, and M. Jannah, “COMPARISON OF SEASONAL TIME SERIES FORECASTING USING SARIMA AND HOLT WINTER’S EXPONENTIAL SMOOTHING (CASE STUDY: WEST SUMATRA EXPORT DATA),” BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1773–1784, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1773-1784.

S. Cania, D. M. Putri, and I. D. Rianjaya, “Penerapan Model Seasonal Autoregressive Integrated Moving Average (SARIMA) pada Jumlah Penumpang Kereta Api di Sumatera Barat,” JOSTECH: Journal of Science and Technology, vol. 3, no. 2, pp. 209–220, Sep. 2023.

N. P. N. Hendayanti and M. Nurhidayati, “Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali,” Varian, vol. 3, no. 2, pp. 149–162, Apr. 2020, doi: 10.30812/varian.v3i2.668.

Afrimayani and Darvi Mailisa Putri, “Analisis Pergerakan Harga Emas Berjangka Menggunakan Model Fuzzy Time Series Markov Chain,” Journal of Science and Technology (JOSTECH), vol. 3, no. 2, pp. 144–156, Sep. 2023.

E. Egrioglu, R. Fildes, and E. Baş, “Recurrent fuzzy time series functions approaches for forecasting,” Granul. Comput., vol. 7, no. 1, pp. 163–170, Jan. 2022, doi: 10.1007/s41066-021-00257-3.

O. Sjofjan and D. N. Adli, “Using fuzzy time series with and without markov chain: to forecast of edible bird nest exported from Indonesia,” E3S Web Conf., vol. 335, p. 00016, 2022, doi: 10.1051/e3sconf/202233500016.

R.-C. Tsaur, “A FUZZY TIME SERIES-MARKOV CHAIN MODEL WITH AN APPLICATION TO FORECAST THE EXCHANGE RATE BETWEEN THE TAIWAN AND US DOLLAR,” International Journal of Innovative Computing, Information, and Control, vol. 8, no. 7(B), pp. 4931–4942, Jul. 2012.

V. M. Santi, R. Wahyu, and I. Hadi, “FORECASTING THE VALUE OF INDONESIA’S OIL AND GAS IMPORTS USING SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL,” BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2047–2058, Dec. 2023, doi: 10.30598/barekengvol17iss4pp2047-2058.

Published
2024-08-02
How to Cite
[1]
D. Putri, A. Afrimayani, L. Hasibuan, F. Ul Hasanah, and M. Jannah, “COMPARISON OF DOUBLE EXPONENTIAL SMOOTHING AND FUZZY TIME SERIES MARKOV CHAIN IN FORECASTING FOREIGN TOURIST ARRIVALS”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1817-1828, Aug. 2024.