GOLD PRICE PREDICTION IN INDONESIA BASED ON INTEREST RATE USING DISTRIBUTED LAG ALMON TRANSFORMATION

  • Nanda Yumna Aqilah Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0009-0005-0888-6314
  • Sekti Kartika Dini Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
Keywords: Distributed-lag Almon Transformation, Gold Price Prediction, Interest Rate

Abstract

Gold is valued for its safety and profitability, driven by steady price changes and influenced by interest rates. Accurately predicting gold prices is very important to make the right investment decisions. This study aims to build a gold price model in Indonesia using the Almon transformation lag distribution and see gold price predictions based on the model that has been built. We used the data on gold prices and interest rates from January 2016 to December 2023. Based on the results of the analysis, the best Almon transformation model used in this study is the Almon model with a maximum lag length of 16 and the second polynomial degree. The prediction results have a MAPE of 16.49%, which shows that the Almon model can predict gold prices well for one year. This study contributes to the understanding of gold price dynamics amid economic variations. However, limitations in the model assumptions should be considered.

Downloads

Download data is not yet available.

References

D. P. Anggraeni, D. Rosadi, H. Hermansah, and A. A. Rizal, “Prediksi Harga Emas Dunia di Masa Pandemi Covid-19 Menggunakan Model ARIMA,” J. Apl. Stat. Komputasi Stat., vol. 12, no. 1, 2020, doi: 10.34123/jurnalasks.v12i1.264.

A. Fauziah and M. E. Surya, “Peluang Investasi Emas Jangka Panjang melalui Produk Pembiayaan Bsm Cicil Emas,” Islamadina, vol. XVI, no. 1, 2016.

M. Y. Wicaksono, “Pengaruh Inflasi, Kurs Dollar dan Suku Bunga Terhadap Harga Emas di Indonesia,” J. Pendidik. dan Ekon., vol. 5, no. 2, 2016.

G. Hyndman, R.J., & Athanasopoulos, Forecasting: principles and practice, 2nd edition, Seconds. Melbourne, Australia: OTexts, 2018. [Online]. Available: OTexts.com/fpp2

D. N. Gujarati and D. C. Porter, Basic Econometrics (5th ed.). 2009.

M. C. Nurahman, S. Wahyuningsih, and D. Yuniarti, “Model Dinamis: Autoregressive Dan Distribusi Lag (Studi Kasus : Pengaruh Kurs Dollar Amerika Terhadap Produk Domestik Regional Bruto (PDRB)),” J. EKSPONENSIAL, vol. 7, no. 2, 2016.

V. Gaspersz, Ekonometrika Terapan 2. Bandung: Penerbit Tarsito, 1991.

F. R. Pratami, Sudarno, and D. Ispriyanti, “Peramalan Dinamis Produksi Padi Di Jawa Tengah Menggunakan Metode Koyck Dan Almon,” J. Gaussian, vol. 5, no. 1, 2016.

S. H. Lihawa, Rermawan, D. R. Isa, and L. O. Nashar, “Distributed Lag Model Pengaruh Jumlah Uang Beredar Terhadap Nilai Tukar Rupiah Menggunakan Metode Koyck dan Almon,” Jambura J. Probab. Stat., vol. 3, no. 1, 2022, doi: 10.34312/jjps.v3i1.11805.

F. Virgantari and W. Rahayu, “Parameter Estimation of Distributed Lag Model with Polynomial Pattern,” J. Ilmu Mat. dan Terap., vol. 15, no. 4, pp. 761–772, 2021.

Y. S. Paramitha, “Penerapan Model Dinamis Autoregressive Distributed Lag (ARDL) Menggunakan Pendekatan Koyck Dan Almon Dalam Memprediksi Profitabilitas Pada PT.Bank Rakyat Indonesia,” p. 17, 2023.

“Gold spot prices.” www.worldgoldcouncil.org (accessed Jan. 16, 2024).

“BI Rate.” https://www.bi.go.id/id/statistik/indikator/bi-rate.aspx (accessed Jan. 16, 2024).

J. Supranto, “Analisis multivariat : Arti dan Interpretasi,” Anal. multivariat arti dan Interpret., 2004.

L. I. Harlyan, E. S. Yulianto, Y. Fitriani, and Sunardi, “Aplikasi Akaike Information Criterion (AIC) pada Perhitungan Efisiensi Teknis Perikanan Pukat Cincin di Tuban, Jawa Timur,” Mar. Fish. J. Mar. Fish. Technol. Manag., vol. 11, no. 2, 2021, doi: 10.29244/jmf.v11i2.38550.

Widarjono, “Pemilihan Model Regresi Terbaik Menggunakan Metode Akaike’s Information Criterion dan Schwarz Information Criterion,” J. Inform. Mulawarman, vol. 4, no. 3, pp. 37–41, 2017.

M. Rizqi, A. Cahya, and N. El Maida, “Implementasi Metode Weighted Moving Average Untuk Sistem Peramalan Penjualan Markas Coffee,” INFORMAL Informatics J., vol. 6, no. 3, p. 154, 2021, doi: 10.19184/isj.v6i3.28467.

P. C. Chang, Y. W. Wang, and C. H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, 2007, doi: 10.1016/j.eswa.2005.11.021.

C. Andreas;, H. W. Nugroho;, S. M. Ulyah;, M. F. F. Mardianto;, and E. Pusporani, “Accounting the US-China trade war and COVID-19 effects in forecasting gold price using ARIMAX-GARCH model,” 2023.

Bank Indonesia, “BI 7-Day Reverse Repo Rate Naik 25bps menjadi 6,00%: Memperkuat Ketahanan Eksternal, Menjaga Stabilitas,” 2018. [Online]. Available: https://www.bi.go.id/id/publikasi/ruang-media/news-release/Pages/sp_208718.aspx

Published
2024-07-31
How to Cite
[1]
N. Aqilah and S. Dini, “GOLD PRICE PREDICTION IN INDONESIA BASED ON INTEREST RATE USING DISTRIBUTED LAG ALMON TRANSFORMATION”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1889-1898, Jul. 2024.