IMPLEMENTATION OF FUZZY C-MEANS AND FUZZY POSSIBILISTIC C-MEANS ALGORITHMS ON POVERTY DATA IN INDONESIA

  • Dian Kurniasari Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0000-0001-8488-8112
  • Virda Kurniawati Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia
  • Aang Nuryaman Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia http://orcid.org/0000-0003-4239-5322
  • Mustofa Usman Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia http://orcid.org/0000-0003-2649-0899
  • Rizki Khoirun Nisa Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia
Keywords: Cluster Analysis, Fuzzy C-Means, Fuzzy Possibilistic C-Means, Partition Entropy

Abstract

Cluster analysis involves the methodical categorization of data based on the degree of similarity within each group to group data with similar characteristics. This study focuses on classifying poverty data across Indonesian provinces. The methodologies employed include the Fuzzy C-Means (FCM) and Fuzzy Probabilistic C-Means (FPCM) algorithms. The FCM algorithm is a clustering approach where membership values determine the presence of each data point in a cluster. On the other hand, the FPCM algorithm builds upon FCM and Possibilistic C (PCM) algorithms by incorporating probabilistic considerations. This research compares the FCM and FPCM algorithms using local poverty data from Indonesia, specifically examining the Partition Entropy (PE) index value. It aims to identify the optimal number of clusters for provincial-level poverty data in Indonesia. The findings indicate that the FPCM algorithm outperforms the FCM algorithm in categorizing poverty in Indonesia, as evidenced by the PE validity index. Furthermore, the study identifies that the ideal number of clusters for the data is 2.

Downloads

Download data is not yet available.

References

R. Probosiwi, “Pengangguran dan Pengaruhnya Terhadap Tingkat kemiskinan,” J. Penelit. Kesejaht. Sos., vol. 15, no. 02, 2016.

B. Gweshengwe and N. H. Hassan, "Defining the characteristics of poverty and their implications for poverty analysis," Cogent Social Sciences, vol. 6, no. 1. 2020. doi: 10.1080/23311886.2020.1768669.

T. Agus Triono and R. C. Sangaji, “Faktor Mempengaruhi Tingkat Kemiskinan di Indonesia: Studi Literatur Laporan Data Kemiskinan BPS Tahun 2022,” J. Soc. Bridg., vol. 1, no. 1, pp. 59–67, 2023, doi: 10.59012/jsb.v1i1.5.

N. Afira and A. W. Wijayanto, “Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 101–109, 2021, doi: 10.34010/komputika.v10i2.4317.

D. Setiawan and A. Zahra, “Pengelompokan Kemiskinan di Indonesia Menggunakan Time Series Based Clustering,” Inferensi, vol. 6, no. 1, p. 83, 2023, doi: 10.12962/j27213862.v6i1.14969.

P. Dubey and R. K. Chakrawarti, "Analysis of Clustering-Algorithms for Efficient Data Mining," Int. Conf. Electr. Electron. Comput. Sci. Math. Phys. Educ. Manag., no. April, 2023, [Online]. Available: https://www.researchgate.net/publication/369819077

M. S. Yana, L. Setiawan, E. M. Ulfa, and A. Rusyana, “Penerapan Metode K-Means dalam Pengelompokan Wilayah Menurut Intensitas Kejadian Bencana Alam di Indonesia Tahun 2013-2018,” J. Data Anal., vol. 1, no. 2, pp. 93–102, 2018, doi: 10.24815/jda.v1i2.12584.

X. Geng, Y. Mu, S. Mao, J. Ye, and L. Zhu, "An Improved K-Means Algorithm Based on Fuzzy Metrics," IEEE Access, vol. 8, pp. 217416–217424, 2020, doi: 10.1109/ACCESS.2020.3040745.

N. Grover, "A study of various Fuzzy Clustering Algorithms," Int. J. Eng. Res., vol. 3, no. 3, pp. 177–181, 2014, doi: 10.17950/ijer/v3s3/310.

K. V. Rajkumar, A. Yesubabu, and K. Subrahmanyam, "Fuzzy clustering and Fuzzy C-Means partition cluster analysis and validation studies on a subset of CiteScore dataset," Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2760–2770, 2019, doi: 10.11591/ijece.v9i4.pp2760-2770.

W. Wiharto and E. Suryani, "The comparison of clustering algorithms K-means and fuzzy C-means for segmentation retinal blood vessels," Acta Inform. Medica, vol. 28, no. 1, pp. 42–47, 2020, doi: 10.5455/AIM.2020.28.42-47.

G. R. Apsari, M. S. Pradana, and N. E. Chandra, “Implementasi Fuzzy C-Means dan Possibilistik C-Means Pada Data Performance Mahasiswa,” Unisda J. Math. Comput. Sci., vol. 6, no. 2, pp. 39–48, 2020, doi: 10.52166/ujmc.v6i2.2392.

D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, "Implementasi Fuzzy C-Means Clustering Dalam Implementation Of Fuzzy C-Means Clustering In," J. Ilmu Mat. dan Terap., vol. 11, pp. 1–12, 2019, [Online]. Available: https://media.neliti.com/media/publications/277582-implementasi-fuzzy-c-means-clustering-da-3afa5ba1.pdf

R. Jayasree and N. A. S. Selvakumari, "Analyzing Student Performance using Fuzzy Possibilistic C-Means Clustering Algorithm," Indian J. Sci. Technol., vol. 16, no. 38, pp. 3230–3235, Oct. 2023, doi: 10.17485/ijst/v16i38.226.

T. A. S. Srinivas, Y. Sravanthi, Y. V. Kumar, and V. D. Shirith, "Data Standardization Key to Effective Data Integration," Adv. Innov. Comput. Program. Lang., vol. 6, no. 1, 2023.

R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for Engineers Scientists Probability & Statistics for Engineers & Scientists, vol. 6. Pearson Prentice Hall, 2007. [Online]. Available: http://www.amazon.com/Probability-Statistics-Engineers-Scientists-8th/dp/0131877119/ref=sr_1_3?ie=UTF8&s=books&qid=1257621824&sr=1-3

B. A. Pimentel, R. De Amorim Silva, and J. C. S. Costa, "Fuzzy C-Means Clustering Algorithms with Weighted Membership and Distance," Int. J. Uncertainty, Fuzziness Knowldege-Based Syst., vol. 30, no. 4, pp. 567–594, 2022, doi: 10.1142/S0218488522500143.

J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3, pp. 32–57, 1973, doi: 10.1080/01969727308546046.

J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984, doi: 10.1016/0098-3004(84)90020-7.

Y. Shan, S. Li, F. Li, Y. Cui, and M. Chen, "Dual-level clustering ensemble algorithm with three consensus strategies," Sci. Rep., vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-49947-9.

M. H. F. Zarandi, S. Sotudian, and O. Castillo, "A new validity index for fuzzy-possibilistic c-means clustering," Sci. Iran., vol. 28, no. 4, pp. 2277–2293, 2021, doi: 10.24200/SCI.2021.50287.1614.

Published
2024-07-31
How to Cite
[1]
D. Kurniasari, V. Kurniawati, A. Nuryaman, M. Usman, and R. Nisa, “IMPLEMENTATION OF FUZZY C-MEANS AND FUZZY POSSIBILISTIC C-MEANS ALGORITHMS ON POVERTY DATA IN INDONESIA”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1919-1930, Jul. 2024.