CLUSTER MAPPING OF HOTSPOTS USING KERNEL DENSITY ESTIMATION IN WEST KALIMANTAN

  • Cristy Framedia Cahyani Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia https://orcid.org/0009-0006-9799-644X
  • Dadan Kusnandar Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Naomi Nessyana Debataraja Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Shantika Martha Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
Keywords: Estimation, Forest and Land Fires, Mapping

Abstract

Forest and land fires pose a recurring concern every year in Indonesia, often taking place in West Kalimantan Province, particularly during the dry season. This study aims to use the Kernel Density Estimation (KDE) to categorize the data of the hotspots in the province of West Kalimantan according to their density and to map the cluster level of the fire risks in the region. The data utilized in this study are secondary data obtained from the images of the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, which are available on firms.modaps.eosdis.nasa.gov and provided by NASA. The data focuses on hotspots dispersed across West Kalimantan province during 2020. The variables examined in the study were the confidence level (≥80%) of forest and land fire hotspots, the distance from each point to the nearest river, and the distance from each point to the nearest road. The kernel density estimation method with a Gaussian kernel function yielded clustering results into three distinct groups according to their vulnerability levels. Low vulnerability areas comprise Cluster 1, which consists of 127 points or 50.97% of the total hotspots. Medium vulnerability areas belong to Cluster 2, which has 47 points or 30.32% of the total. Cluster 3 includes high vulnerability locations, consisting of 29 points or 18.71% of the total. The most susceptible areas to forest and land fires are located within the Ketapang regency.

Downloads

Download data is not yet available.

References

Kementerian Lingkungan Hidup dan Kehutanan, “Policy Brief Edisi 9 Th. 2020,” Jakarta: Ditjen Pengendalian Perubahan Iklim, 2020.

A. S. Thoha, B. H. Saharjo, R. Boer, and M. Ardiansyah, “Characteristics and causes of forest and land fires in Kapuas District, Central Kalimantan Province, Indonesia,” Biodiversitas, vol. 20, no. 1, pp. 110–117, Dec. 2018, doi: 10.13057/biodiv/d200113.

F. Guo, L. Zhang, S. Jin, M. Tigabu, Z. Su, and W. Wang, “Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests,” Forests, vol. 7, no. 12, p. 250, Oct. 2016.

A. M. Sabrina, “Strategi Pencegahan dan Penanggulangan Kebakaran Hutan dan Lahan,” Al-Mabsut: Jurnal Studi Islam dan Sosial, vol. 9, no. 1, pp. 119–130, 2015.

Giglio, Louis, MODIS Collection 6 Active Fire Product User’s Guide Revision B. University of Maryland.: Department of Geographical Sciences, 2018.

E.-S. M. M. Zahran and S. Shams, “Validation Of Forest Fire Hotspot Analysis In Gis Using Forest Fire Contributory Factors,” Systematic Reviews in Pharmacy, vol. 11, no. 12, pp. 249–255, 2020.

R. Rosdania, F. Agus, and A. H. Kridalaksana, “Sistem Informasi Geografi Batas Wilayah Kampus Universitas Mulawarman Menggunakan Google Maps API,” JIM, vol. 10, no. 1, p. 38, Jun. 2016.

M. J. Zaki and W. M. Jr, “Data Mining and Machine Learning: Fundamental Concepts and Algorithms,” Cambridge, UK: Cambridge University Press, 2020.

E. Setiawan, H. Murfi, and Y. Satria, “Analisis Penggunaan Metode Kernel Density Estimation pada Loss Distribution Approach untuk Risiko Operasional,” Jurnal Matematika Integratif, vol. 12, no. 1, 2016.

C. A. Nanda, A. L. Nugraha, and H. S. Firdaus, “Analisis Tingkat Daerah Rawan Kriminalitas Menggunakan Metode Kernel Density Di Wilayah Hukum Polrestabes Kota Semarang,” Jurnal Geodesi UNDIP, vol. 8, no. 4, Art. no. 4, Oct. 2019.

S. Węglarczyk, “Kernel density estimation and its application,” ITM Web Conf., vol. 23, p. 00037, 2018, doi: 10.1051/itmconf/20182300037.

A. Azzalini and G. Menardi, “Clustering via Nonparametric Density Estimation: The R Package pdfCluster,” J. Stat. Soft., vol. 57, no. 11, pp. 1–26, 2014.

E. Mapilata and K. Gandasasmita, “Analisis Daerah Rawan Kebakaran Hutan Dan Lahan Dalam Penataan Ruang Di Kota Palangka Raya, Provinsi Kalimantan Tengah,” Majalah Ilmiah Globe, vol. 15, no. 2, pp. 178–184, Sep. 2013.

P. Fitria, A. Jauhari, and F. Rianawati, “Analisis Tingkat Kerawanan Kebakaran Hutan dan Lahan Berbasis Penginderaan Jauh di Kecamatan Karang Intan,” JSS, vol. 4, no. 6, p. 1120, Dec. 2021.

B. W. Silverman, Density Estimation for Statistics and Data Analysis. London: Chapman dan Hall, 1986.

J. A. Saputra and E. Listyani, “Pemilihan Bandwidth pada Estimator Nadaraya-Watson dengan Tipe Kernel Gaussian pada Data Time Series,” Jurnal Pendidikan Matematika dan Sains, vol. 1, no. 1, pp. 1–7, 2016.

L. C. Matioli, S. R. Santos, M. Kleina, and E. A. Leite, “A new algorithm for clustering based on kernel density estimation,” Journal of Applied Statistics, vol. 45, no. 2, pp. 347–366, Jan. 2018.

Published
2024-10-11
How to Cite
[1]
C. Cahyani, D. Kusnandar, N. Debataraja, and S. Martha, “CLUSTER MAPPING OF HOTSPOTS USING KERNEL DENSITY ESTIMATION IN WEST KALIMANTAN”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2353-2362, Oct. 2024.