ADVANCEMENTS IN ALZHEIMER’S DIAGNOSIS THROUGH MRI USING BAYESIAN CONVOLUTIONAL NEURAL NETWORKS AND VARIATIONAL INFERENCE

  • Alifia Ardha Nareswari Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
  • Dina Tri Utari Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0009-0000-8489-8062
Keywords: Alzheimer, Bayesian Convolutional Neural Network, Variational Inference

Abstract

Alzheimer’s disease is one of the brain disorders that can be deadly in older. The disease is less treated and less recognized, but Alzheimer’s disease is now a significant public health problem. Early detection of the disease can significantly reduce symptoms. However, the lack of medical personnel makes handling this disease complex. Therefore, an automatic diagnosis of Alzheimer’s disease is needed with a Magnetic Resonance Imaging (MRI) examination to get an accurate diagnosis of the disease. This study classified the type of Alzheimer’s disease with deep learning methods using the Bayesian Convolutional Neural Network (BCNN) and the Variational Inference (VI) technique. It aims to determine image classification and accuracy level at the level of Alzheimer’s disease by using 2,400 brain MRI images, divided into three classes (non-demented, very mild demented, and mild demented) based on severity. The data was acquired from the kaggle.com website. We use a dataset scenario of 80% for training and 20% for testing, 100x100 pixels, kernel size 3x3, and optimizer Adam with epoch 200. The accuracy of the image classification process is 80%. The non-demented label predicts that the uncertainty is 0.371, and the other uncertainty prediction is 0.002. The ability to anticipate uncertainty enables clinicians to make informed decisions regarding the reliability of the model’s output and the need for additional validation or confirmation.

 

Downloads

Download data is not yet available.

References

WHO, “Dementia,” World Health Organization. Accessed: Sep. 26, 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/dementia

G. Litjens et al., “A survey on Deep Learning in Medical Image Analysis,” ScienceDirect, vol. 42, pp. 60–88, Dec. 2017, Accessed: Mar. 25, 2024. [Online]. Available: https://doi.org/10.1016/j.media.2017.07.005

L. Zhang, M. Wang, M. Liu, and D. Zhang, “A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis,” Oct. 08, 2020, Frontiers Media S.A. doi: 10.3389/fnins.2020.00779.

S. Murugan et al., “DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images,” IEEE Access, vol. 9, pp. 90319–90329, 2021, doi: 10.1109/ACCESS.2021.3090474.

D. Wang et al., “Application of Multimodal MR Imaging on Studying Alzheimer’s Disease: A Survey,” Bentham Science, vol. 10, no. 8, pp. 877–892, 2013.

S. Ahmed et al., “Ensembles of Patch-Based Classifiers for Diagnosis of Alzheimer Diseases,” IEEE Access, vol. 7, pp. 73373–73383, 2019, doi: 10.1109/ACCESS.2019.2920011.

J. Wu, H. Zhang, X. Zhu, Y. Zhang, X. Ding, and H. Yang, “Ensemble Learning-Base Multimodal Data Analysis Improving the Diagnostic Accuracy of Alzheimer’s Disease,” in Proc. SPIE 12770, Optics in Health Care and Biomedical Optics XIII, 2023. Accessed: Mar. 25, 2024. [Online]. Available: https://doi.org/10.1117/12.2687618

M. Reynolds, T. Chaudhary, M. E. Torbati, D. L. Tudorascu, and K. Batmanghelich, “ComBat Harmonization: Empirical Bayes versus Fully Bayes Approaches,” bioRxiv, 2023, doi: 10.1101/2022.07.13.499561.

B. Raharjo, Deep Learning dengan Python. Semarang, 2022.

H. A. Haay, S. Trihandaru, and B. Susanto, “INTRODUCTION OF PAPUAN AND PAPUA NEW GUINEAN FACE PAINTING USING A CONVOLUTIONAL NEURAL NETWORK,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 1, p. 213, Apr. 2023, doi: 10.30598/barekengvol17iss1pp0211-0224.

D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Analisis Citra Medis,” KONSTELASI (Konvergensi Teknologi dan Sistem Informasi), vol. 2, no. 2, pp. 377–378, Dec. 2022, Accessed: Jan. 08, 2024. [Online]. Available: https://ojs.uajy.ac.id/index.php/konstelasi/article/view/5367/2568

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), vol. 3, no. 2, pp. 50–52, 2018, Accessed: Jan. 08, 2024. [Online]. Available: https://core.ac.uk/download/pdf/229217808.pdf

B. B. Traoré, B. Kamsu-Foguem, F. Tangara, and B. B. Traore, “Deep convolution neural network for image recognition,” Ecol Inform, vol. 48, pp. 257–268, 2019, doi: 10.1016/j.ecoinf.2018.10.002ï.

I. W. S. E. P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” JURNAL TEKNIK ITS, vol. 5, no. 1, 2016, Accessed: Jan. 06, 2024. [Online]. Available: https://media.neliti.com/media/publications/191064-ID-klasifikasi-citra-menggunakan-convolutio.pdf

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Jurnal Ilmiah Teknik Informatika (FORMAT), vol. 8, no. 2, p. 140, 2019, Accessed: Jan. 07, 2024. [Online]. Available: https://www.mathworks.com/discovery/convolutional-neural-network.html

H. Yingge, A. Imran, and K. Y. Lee, “Deep Neural Networks on Chip - A Survey,” 2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020, pp. 589–592, Feb. 2020, doi: 10.1109/BigComp48618.2020.00016.

A. Yusuf, R. C. Wihandika, and C. Dewi, “Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, p. 10598, 2019, Accessed: Jan. 08, 2024. [Online]. Available: http://j-ptiik.ub.ac.id

M. H. Naufal, “Pendeteksian Balon Ucapan Pada Komik Jepang (Manga) Dengan Run Length Smooth Dan EfficientNet-B6,” Universitas Komputer Indonesia, 2023.

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014, Accessed: Mar. 13, 2024. [Online]. Available: http://arxiv.org/abs/1412.6980

M. Yaqub et al., “State-of-the-art CNN Optimizer for Brain Tumor Segmentation in Magnetic Resonance Images,” Brain Sci, vol. 10, no. 7, pp. 1–19, Jul. 2020, doi: 10.3390/brainsci10070427.

H. Yu, A. H. Seno, Z. Sharif Khodaei, and M. H. F. Aliabadi, “Structural Health Monitoring Impact Classification Method Based on Bayesian Neural Network,” MDPI, vol. 14, no. 19, Oct. 2022, doi: 10.3390/polym14193947.

J. W. Book, “Training Bayesian Neural Networks A Study of Improvements to Training Algorithms,” Lund University, 2020. Accessed: Oct. 01, 2023. [Online]. Available: https://lup.lub.lu.se/student-papers/record/9008040/file/9008041.pdf

H. Jordão, A. J. Sousa, and A. Soares, “Using Bayesian Neural Networks for Uncertainty Assessment of Ore Type Boundaries in Complex Geological Models,” Natural Resources Research, vol. 32, no. 6, pp. 2495–2514, Dec. 2023, doi: 10.1007/s11053-023-10265-6.

A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,” 2017.

D. T. Chang, “Bayesian Neural Networks: Essentials,” 2021, Accessed: Oct. 03, 2023. [Online]. Available: https://arxiv.org/abs/2106.13594

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight Uncertainty in Neural Networks,” International Conference on Machine Learning, vol. 37, 2015, Accessed: Oct. 26, 2023. [Online]. Available: https://arxiv.org/abs/1505.05424

M. Fujisawa and I. Sato, “Multilevel Monte Carlo Variational Inference,” Journal of Machine Learning Research, vol. 22, pp. 1–44, 2021, Accessed: Mar. 13, 2024. [Online]. Available: http://jmlr.org/papers/v22/20-653.html.

S. Dubey, “Alzheimer’s Dataset (4 class of Images),” kaggle.com. [Online]. Available: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images

Published
2024-10-11
How to Cite
[1]
A. Nareswari and D. Utari, “ADVANCEMENTS IN ALZHEIMER’S DIAGNOSIS THROUGH MRI USING BAYESIAN CONVOLUTIONAL NEURAL NETWORKS AND VARIATIONAL INFERENCE”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2423-2434, Oct. 2024.