PROSPECTIVE RESERVE AND FULL PRELIMINARY TERM RESERVE ON ENDOWMENT LAST SURVIVOR LIFE INSURANCE USING CLAYTON COPULA

  • Hasriati Hasriati Mathematics Department, Faculty of Mathematics and Sciences, Universitas Riau, Indonesia
  • Voundri Nindia Nayunda Mathematics Department, Faculty of Mathematics and Sciences, Universitas Riau, Indonesia
  • Haposan Sirait Mathematics Department, Faculty of Mathematics and Sciences, Universitas Riau, Indonesia
  • Ihda Hasbiyati Mathematics Department, Faculty of Mathematics and Sciences, Universitas Riau, Indonesia https://orcid.org/0000-0002-4292-4653
Keywords: Clayton Copula, Endowment Insurance, Full Preliminary Term Reserve, Last Survivor, Prospective Reserve

Abstract

Combined life insurance is a type of insurance that protects two or more people who are related by family and is divided into two, namely joint-life life insurance and last-survivor life insurance. The last survivor life insurance is a condition of life insurance that will continue if there is at least one of all insurance participants who is still alive and will stop if all insurance participants die. The insurance company has to pay the benefit to the heirs of the insurance participant. When a claim occurs, the insurance company must prepare the reserve fee. The purpose of this research is to determine the amount of premium reserve of endowment last-survivor life insurance using prospective reserve and full preliminary term reserve. Full preliminary term reserve is one of the modified premium reserve calculations from Zillmer Reserve. To determine prospective reserve and full preliminary term reserve using the initial life annuity, single premium, and annual premium. Whereas the initial life annuity is influenced by the combined life and death opportunity of the insurance participants. Furthermore, the combined life and death opportunity of insurance participants will be obtained from Clayton copula and to obtain the parameter of Clayton copula, Rstudio software is used. Based on the result, the value of prospective reserves and full preliminary term reserves has increased every year and prospective reserves produce a greater value than full preliminary term reserves. If the insurance company uses this reserve calculation, the reserve that the company must prepare will increase every year. This is useful for insurance companies in predicting the amount of reserves they must have.

Downloads

Download data is not yet available.

References

M. A. Boateng, A. Y. Omari-Sasu, R. K. Avuglah, and N. K. Frempong, “A Mixture of Clayton, Gumbel, and Frank Copulas: A Complete Dependence Model”, Journal of Probability and Statistics, vol. 2022, pp. 1-7, Aprill 2022

F. F. Bintoro and F. N. F. Sudding, “Comparison of Premium Reserves with New Jersey Methods and Full Preliminary Term on Endowment Insurance”, Journal of Actuarial, Finance and Risk Management, vol. 1, no. 2, pp. 1-7, November 2022.

N. L. Bowers, H. U. Geerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt, Actuarial Mathematics, Schaumburg: The Society of Actuaries, 1997.

S. J. Camilli, I. Duncan, and R. L. London, Models for Quantifiying Risk, Sixth Edition, Winsted: ACTEX publications, 2004.

U. Cherubini, E. Luciano dan W. Vecchiato, Copula Methods in Finance, John Wiley & Sons, Hokoben, 2004.

R. Darabi and M. Baghban, “Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis”, Advances in Mathematical Finance and Applications, vol. 3, no. 1, pp. 33-51, February 2018.

D. C. M. Dickson, M. R. Hardy, and H. R. Waters, Actuarial Mathematics for Life Contingent Risk, Cambridge University Press, New York: Cambridge University Press, 2009.

P. Erawati and M. Subhan, “Penentuan Premi Asuransi Jiwa Berjangka Status Last Survivor Menggunakan Model GFGM-Type II Copula”, Journal of Mathematics UNP, vo.7, no.2, pp.69-75, 2022.

T. Futami, Matematika Asuransi Jiwa Bagian I, terjemahan. dari seimei hoken sugaku, jokan (92 Revision). Japan: Incorporated Foundation Oriental Life Insurance Cultural Development Center, 1993.

T. Futami, Matematika Asuransi Jiwa Bagian II, terjemahan. dari seimei hoken sugaku, jokan (92 Revision). Japan: Incorporated Foundation Oriental Life Insurance Cultural Development Center, 1994.

Hasriati, and T. P. Nababan, “Private Premium of Endowment Last Survivor and Joint Life Insurance with Pareto Distribution,” International Journal of Statistical Distributions and Applications, vol. 5, no. 4, pp. 76–81, December 2019.

Hasriati, T. P. Nababan and Ihda Hasbiyati, “Reserve of Life Insurance Prospective Dwiguna Joint Life and Last Survivor with Gompertz Law,” in Proc. 2nd African Int. Conf. on Industrial Engineering and Operations Management Harare, pp. 1815-1824, Dec. 7-10, 2020.

Hasriati, Haposan Sirait, Agung Prabowo, Sukono, and Abdul Talib Bon, “Life Insurance Premiums Dwiguna Joint Life and Last Survivor with Makeham Law”, in Proc. 11th Annual Int. Conf. on Industrial Engineering and Operations Management Singapura, pp. 3270-3279, March 7-11, 2021.

Hasriati, Sukono, I. Hasbiyati, T. P. Nababan and A. Kirana, “Zillmer Reserves in Dwiguna Life Insurance with the Cox-Ingersoll-Ross (CIR) Interest Rate,” Komputer: J. Ilmiah Ilmu Komputer dan Matematika, vol. 20, no. 1, pp. 01–09, December 2023.

A. M. Karakas, “Using Copulas for Modeling Dependence in Wind Power”, Asian Journal of Engineering and Technology, vol.7, pp.33-49, February 2019.

S. G. Kellison, The theory of interest, Homewood: Richard D. Irwin Inc, 1991.

F. Lestari and A. Dzakiya, “Perbandingan Estimasi Premi Asuransi Jiwa Joint Life Menggunakan Asumsi Kebebasan Mortalita dan Metode Copula”, Jurnal Matematika Integratif, vol.19, no.2, pp.201-212, 2023.

R. B. Nelsen, An Introduction to Copulas, Second Edition, Springer, New York, 2006.

P. Novianti, S. H. Kartiko, dan D. Rosadi, “Application of Clayton copula to identify dependency structure of Covid-19 outbreak and average tempe- rature in Jakarta Indonesia”, Journal of Physics: Conference Series, 1943 (2021), 1-10.

A. W. Nurcahyani, D. R. S. Saputro, and N. A. Kurdhi, “Korelasi Kendall (τ) untuk Estimasi Parameter Korelasi Kendall (τ) untuk Estimasi Parameter”, Jurusan Pendidikan Matematika FMIPA UNY, pp.53-58, 2016

M. R. Oktavian, D. Devianto, and F. Yanuar, “Kajian Metode Zillmer, Full Preliminary Term, Dan Premium Sufficiency Dalam Menentukan Cadangan Premi Pada Asuransi Jiwa Dwiguna”, Jurnal Matematika UNAND, vol.3, no.4, pp.160-167, 2014.

K. Ramadani, D. Devianto, I. Rahmi HG, “Pengaruh Penggunaan Hukum Mortalitas Gompertz Pada Penentuan Besarnya Asuransi Jiwa Dwiguna Dengan Metode Full Preliminary Term”, Jurnal Matematika UNAND, vol.8, no.1, pp.163-170, May 2019.

Ruhiyat, W. Erliana, K. Lamberto, and E. Ardelia, “Last-Survivor Insurance Premium and Benefit Reserve Calculation using Gamma-Gompertz Mortality Law,” J. Mat. Integr., vol. 18, no. 1, pp. 9–18, May 2022.

D. Setianingsih, S. Rosita, and S. Resti S, “Modification of Prospective Life Insurance Reserve Prospective Calculations Using The Zillmer Method”, Journal of Mathematical Sciences and Optimization, vol.1, no.2, pp.63-71, 2024.

L. A. Tarigas, N. Satyahadewi, and H. Perdana, “Penentuan Cadangan Premi Asuransi Jiwa Dwiguna Menggunakan Metode Full Preliminary Term Dan Premium Sufficiency”, Buletin Ilmiah Math. Stat. dan Terapannya, vol.8, no.3, pp.379-386, 2019.

R. E. Walpole, R. H. Myers, dan S. L. Myers, Probability and Statistics for Engineering and Scientist, Ninth Edition, Prentice Hall, Boston, 2012.

Published
2024-10-11
How to Cite
[1]
H. Hasriati, V. Nayunda, H. Sirait, and I. Hasbiyati, “PROSPECTIVE RESERVE AND FULL PRELIMINARY TERM RESERVE ON ENDOWMENT LAST SURVIVOR LIFE INSURANCE USING CLAYTON COPULA”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2479-2490, Oct. 2024.