MODELING STUNTING PREVALENCE IN INDONESIA USING SPLINE TRUNCATED SEMIPARAMETRIC REGRESSION

  • Rizki Dwi Fadlirhohim Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman, Indonesia
  • Sifriyani Sifriyani Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman, Indonesia https://orcid.org/0000-0002-4616-775X
  • Andrea Tri Rian Dani Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman, Indonesia
Keywords: Semiparametric Regression, Stunting Prevalence, Spline Truncated

Abstract

Semiparametric regression combines parametric and nonparametric regression approaches. It is employed when the relationship pattern of the response variable is known with some predictors, while for other predictors, the relationship pattern is uncertain. The parametric regression component in this study is linear regression, while the nonparametric component utilizes a spline truncated estimator, resulting in a semiparametric spline truncated regression model. The case study focuses on the prevalence of stunting across 34 provinces in Indonesia in 2022, revealing a relatively high prevalence of 21.60%. The research aims to determine the optimal number of knots, the best model, and factors influencing stunting prevalence in Indonesia. The findings indicate that the optimal three-knot model with a GCV of 9.30 yields an RMSE of 1.70 and R2 of 92.71%. Significance tests for simultaneous and partial parameters reveal that all predictor variables significantly influence stunting prevalence.

Downloads

Download data is not yet available.

References

W. Green, and B. W. Silverman, Density Estimation for Statistics and Data Analysis. Arrowsmith Ltd., Bristol. 2000.

I. N. Budiantara, Regresi Nonparametrik Spline Truncated. Surabaya: ITS Press. 2019.

A. T. R. Dani, and L. Ni’matuzzahroh, “Penerapan Keluarga Model Spline Truncated Polinomial pada Regresi Nonparametrik. Inferensi,” Department of Statistics, ITS, vol. 5, no. 1. pp. 37-44, 2022.

Sifriyani., A. T. R. Dani, M. Fauziyah., M. N. Hayati, S. Wahyuningsih, and S. Prangga, “Spline And Kernel Mixed Estimators In Multivariable Nonparametric Regression For Dengue Hemorrhagic Fever Model,” Commun. Math. Biol. Neurosci, pp. 1–15, 2023.

A. T. R . Dani, and N. Y. Adrianingsih, “Estimasi Model Regresi Semiparametrik Spline Truncated menggunakan metode Maximum Likelihood Estimation (MLE),” Jambura Journal Of Probability and Statistics. vol. 2, no. 2. pp. 56-63, 2021.

Litawati and I. N. Budiantara, “Pendekatan Regresi Nonparametrik Spline Untuk Pemodelan Laju Pertumbuhan Ekonomi (LPE) di Jawa Timur,” Jurnal Sains dan Seni Pomits, vol. 2, no. 2, 2013.

R. L. Eubank, Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker Inc. Ebook. 1988.

R. L. Eubank, Nonparametric Regression and Spline Smoothing 2nd. New York: Marcel Dekker Inc. Ebook. 1999.

I. N. Budiantara, and A.P. Sugiantari, “Analisis Faktor-faktor yang Mempengaruhi Angka Harapan Hidup di Jawa Timur Menggunakan Regresi Semiparametrik Spline,” Jurnal Sains dan Seni Pomits, vol. 2, no. 1, pp. 37-41, 2013.

E. O. Permatasari, T.A. Rumiati, and M. Ishaq, “Analisis Faktor-Faktor yang Mempengaruhi Produksi Padi di Provinsi Jawa Timur Menggunakan Regresi Semiparametrik Spline,” Jurnal Sains dan Seni ITS, vol. 5, no. 1, pp. 420-425, 2017.

S. Side, W. Sanusi, and M. W. Maksum, “Model Regresi Semiparametrik Spline untuk Data Longitudinal pada Kasus Demam Berdarag Dengue di Kota Makassar,” Journal of Mathematics, Computations, and Statistics. vol. 3, no. 1, pp. 20-31, 2020.

V. E. Rahmawati, E. P. Pamungkasari, and B. Murti, “Determinants of Stunting and Child Development in Jombang District,” Journal of Maternal and Child Health, vol. 3, no. 1, pp. 68–80, 2018.

Kementerian Kesehatan RI, Hasil Survei Status Gizi Indonesia (SSGI) 2022. Jakarta: Kemenkes. 2022.

Abdy, “Tinjauan Singkat tentang Regresi Parametrik dan Regresi Nonparametrik,” SAINTIFIK: Jurnal Matematika, Sains dan Pembelajarannya. vol. 5, no. 1, 2019.

W. Noviani, I. Purnamasari, and Sifriyani, “Pemodelan Regresi Nonparametrik Spline Linear Persentase Penduduk Miskin di Kalimantan,” Jurnal Siger Matematika. vol. 1, no. 2. pp. 34-41, 2020.

R. Mubarak, and I. N. Budiantara, “Analisis Regresi Spline Multivariabel untuk Pemodelan Kematian Penderita Demam Berdarah Dengue (DBD) di Jawa Timur,” Jurnal Sains dan Seni ITS, vol 1, no. 1, 2013.

R. D. Ente, A. Islamiyati, and Raupong., “Pengaruh Indeks Massa Tubuh dan Trigliserida terhadap Guula Darah dengan Model Regresi Nonparametrik Spline Biprediktor,” Jurnal Estimasi, vol. 2, no. 2. pp. 71-79, 2021.

Sifriyani, A. R. M. Sari, A. T. R. Dani, S. Jalaluddin. “Bi-response truncated spline nonparametric regression with optimal knot point selection using generalized cross-validation in diabetes mellitus patient's blood sugar levels,” Communications in Mathematical Biology and Neuroscience. vol. 48, 2023.

Sifriyani, Diu, M.Y. Mar’ah, Z. Anggraini, D. and Jalaluddin, S., “Modeling of Dengue Hemorrhagic Fever Cases In Aws Hospital Samarinda Using Bi-Responses Nonparametric Regression With Estimator Spline Truncated,” Communications in Mathematical Biology and Neuroscience, vol. 27, 2023.

S. B. Loklomin, “Pemodelan Indeks Pembangunan Manusia Di Kepulauan Maluku Dengan Pendekatan Estimasi Interval Parameter Model Regresi Semiparametrik Spline Truncated,” BAREKENG: Journal of Mathematics and Itrts Applications. vol. 13, no. 2, pp. 125-134, 2019.

Y. M. Pratama, A. A. R. Fernandes, N. W. S. Wardhani, Nurjannah, and Solimun, “Statistical Modeling Of Tourism Investment Decisions In Indonesia Using Semiparametric Approach,” BAREKENG: Journal of Mathematics and Itrts Applications. vol. 18, no. 1, pp. 529-536, 2024.

C. A. Putri, Indahwati and A. Kurnia, “Small Area Estimation Of Mean Years School In Bogor District Using Semiparametric P-Spline,” BAREKENG: Journal of Mathematics and Itrts Applications. vol. 16, no. 4, pp. 1541-1550, 2022.

G. Wahba, Spline Models for Observation Data Society for Industrial and Applied Mathematics. Philadelphia: Pennsylvania. 1990.

A. P. Anisar, Sifriyani, and A. T. R. Dani, “Estimation Of A Bi-Response Truncated Spline Nonparametric Regression Model On Life Expectancy And Prevalence Of Underweight Children In Indonesia,” BAREKENG: Journal of Mathematics and Itrts Applications. vol. 17, no. 4, pp, 2011-2022, 2023.

S. Anggraeni, Sifriyani., and Q, Q. A’yun, “Tuberculosis Case Model Using Gcv And Ubr Knot Selection Methods In Truncated Spline Nonparametric Regression,” BAREKENG: Journal of Mathematics and Itrts Applications. vol. 17, no. 3, pp. 1565-1574.

Sudjana., Metoda Statistika. Bandung: Tarsito. 2002.

M. A. D. Octovanny, “Pemodelan Indeks Pembangunan Kesehatan Masyarakat Provinsi Papua Dengan Regresi Semiparametrik Truncated Spline,” Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, pp. 29-41, 2023.

Utami, “Pendekatan Regresi Semiparametrik Spline Truncated Untuk Pemodelan Tingkat Pengangguran Terbuka Di Jawa Tengah,” Jurnal Statistika, vol. 6, no. 2, pp. 172-176.

R. E. Walpole, Pengantar Statistika edisi ke-3. Jakarta: PT. Gramedia Pustaka Utama. 1995.

World Health Organization. Levels and Trends in Child Malnutrition. UNICEF: WHO. 2012

A. T. R. Dani, F. B. Putra, M. A. Zen, Sifriyani, M. Fauziyah, V. Ratnasari, and N. Y. Adrianingsih, “Pemodelan Kadar Hemoglobin Pada Pasien Demam Berdarah di Kota Samarinda Menggunakan Regresi Semiparametrik Spline Truncated,” Jambura Journal of Probability and Statistics, vol. 4, no. 2, pp. 56-64, 2023.

Published
2024-07-31
How to Cite
[1]
R. Fadlirhohim, S. Sifriyani, and A. Dani, “MODELING STUNTING PREVALENCE IN INDONESIA USING SPLINE TRUNCATED SEMIPARAMETRIC REGRESSION”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 2015-2028, Jul. 2024.