PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES

Keywords: Bayesian Inference, Extreme Events, Frequentist Inference, Lognormal Distribution, Pareto Type I Distribution

Abstract

Extreme events are events that rarely occur but they cause substantial losses. Insurance companies need to take extreme events into account in risk management because extreme events can have a negative impact on the company's financial health. As a result, insurance companies need an appropriate loss model that matches the empirical data from these extreme events. A distribution that is heavy-tailed and skewed to the right is a good distribution for modeling the magnitude of losses from extreme events. In this paper, two distributions with heavy tails and skew to the right will be used to model the magnitude of losses from extreme events, namely the lognormal distribution and the Pareto distribution type I. The parameters of these distributions are estimated using two inferences, namely the frequentist and Bayesian inferences. In the frequentist inference, two methods are applied, namely the moment method and maximum likelihood. On Bayesian inference, two prior distributions are used, namely uniform and Jeffrey. Test model suitability is carried out by visually comparing the model distribution function with the empirical distribution function, as well as by comparing the Root Mean Square Error (RMSE) value. The visualization results of the distribution function and RMSE values ​​show that in general, the Bayesian inference is better at estimating parameters than the frequentist inference. In the frequentist inference, the maximum likelihood method can provide better estimated values ​​than the moment method. In the Bayesian inference, the two prior distributions show a relatively similar fit to the data and tend to be better than the frequentist inference.

Downloads

Download data is not yet available.

References

Šotić, A., & Rajić, R. (2015). The Review of the Definition of Risk. Online Journal of Applied Knowledge Management, 3(2015), 17–26.

Nair, J., Wierman, A., & Zwart, B. (2022). The Fundamentals of Heavy Tails. Cambridge University Press. https://doi.org/10.1017/9781009053730

A Klugman, S., H Panjer, H., & E Willmot, G. (2019). Loss Models: from Data to Decisions (D. J. Balding, N. A. C. Cressie, G. M. Fitzmaurice, G. H. Givens, H. Goldstein, G. Molenberghs, D. W. Scott, A. F. M. Smith, & R. S. Tsay, Eds.; 5th ed.). John Wiley & Sons.

W. Cheruiyot, K., Ouko, A., & Kirimi, E. (2016). Bayesian Inferences for Two Parameter Weibull Distribution. IOSR Journal of Mathematics, 4, 25–39.

Skarstein, E., Martino, S., & Muff, S. (2023). A joint Bayesian framework for missing data and measurement error using integrated nested Laplace approximations. Biometrical Journal, 65(8). https://doi.org/10.1002/bimj.202300078

KÖKSAL BABACAN, E., & KAYA, S. (2020). Comparison of parameter estimation methods in Weibull Distribution. Sigma Journal of Engineering and Natural Sciences, 38(3), 1609–1621.

R. K., J., & Kumar, V. (2020). Lindley Inverse Weibull distribution: Theory and Applications. Bulletin of Mathematics and Statistics Research, 8(3), 32–46.

Ameen, A. A., & Akkash, U. A. (2021). Maximum Likelihood Estimation and Bayesian Estimation of three-parameter Weibull Distribution Based on Interval-Censored Data. Journal of Physics: Conference Series, 1818(1), 012199. https://doi.org/10.1088/1742-6596/1818/1/012199

YILMAZ, A., KARA, M., & AYDOĞDU, H. (2020). A study on comparisons of Bayesian and classical parameter estimation methods for the two-parameter Weibull distribution. Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 576–602. https://doi.org/10.31801/cfsuasmas.606890

Jawad, N., Ghdhaib Kalt, H., A. Aal-Rkhais, H., & E. Hashoosh, A. (2021). The Weibull Lindley: General family of probability distributions. Mathematics in Engineering, Science and Aerospace MESA, 12(1).

ALİ, S., DEY, S., TAHİR, M. H., & MANSOOR, M. (2020). A comparison of different methods of estimation for the Flexible Weibull distribution. Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 794–814. https://doi.org/10.31801/cfsuasmas.597680

Duangsaphon, M., Santimalai, R., & Volodin, A. (2023). Bayesian Estimation and Prediction for Discrete Weibull Distribution. Lobachevskii Journal of Mathematics, 44(11), 4693–4703. https://doi.org/10.1134/S1995080223110124

Ajmal, M., Danish, M. Y., & Arshad, I. A. (2022). Objective Bayesian analysis for Weibull distribution with application to random censorship model. Journal of Statistical Computation and Simulation, 92(1), 43–59. https://doi.org/10.1080/00949655.2021.1931210

Jiang, R. (2022). A novel parameter estimation method for the Weibull distribution on heavily censored data. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(2), 307–316. https://doi.org/10.1177/1748006X19887648

Sumair, M., Aized, T., Gardezi, S. A. R., Rehman, S. U. ur, & Rehman, S. M. S. (2020). A novel method developed to estimate Weibull parameters. Energy Reports, 6, 1715–1733. https://doi.org/10.1016/j.egyr.2020.06.017

Algarni, A., Elgarhy, M., M Almarashi, A., Fayomi, A., & R El-Saeed, A. (2021). Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type‐I Censoring Scheme. Advances in Civil Engineering, 2021(1). https://doi.org/10.1155/2021/5701529

Khan, M. G. M., & Ahmed, M. R. (2023). Bayesian method for estimating Weibull parameters for wind resource assessment in a tropical region: a comparison between two-parameter and three-parameter Weibull distributions. Wind Energy Science, 8(8), 1277–1298. https://doi.org/10.5194/wes-8-1277-2023

ACITAŞ, Ş., & ARSLAN, T. (2020). A COMPARISON OF DIFFERENT ESTIMATION METHODS FOR THE PARAMETERS OF THE WEIBULL LINDLEY DISTRIBUTION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 8(1), 19–33. https://doi.org/10.20290/estubtdb.529328

Cohen, A., & Jones Whitten, B. (2020). Parameter Estimation in Reliability and Life Span Models. CRC Press. https://doi.org/10.1201/9781003066064

Amalia, A. N., Tiro, M. A., & Aswi, A. (2021). Perbandingan Metode Momen, Maximum Likelihood, dan Bayes dalam Menduga Parameter Distribusi Pareto. Journal of Statistics and Its Application on Teaching and Research, 3(3), 115–125.

Sultan, R., & Ahmad, S. P. (2013). Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates. Journal of Modern Applied Statistical Methods, 12(2), 304–313. https://doi.org/10.22237/jmasm/1383279420

V. Hogg, R., W. McKean, J., & T. Craig, A. (2019). Introduction to Mathematical Statistics (8th ed.). Pearson Education.

Bell, W. W. (1968). Special Functions for Scientist and Engineers. Butler and Tanner Ltd.

Hogg, R. V., & Klugman, S. A. (1984). Loss Distributions. Wiley. https://doi.org/10.1002/9780470316634

Beirliant, J., Teugels, J. L., & Vynckier, P. (1996). Practical Analysis of Extreme Values . Leuven University Press, 27.

Published
2025-01-13
How to Cite
[1]
J. Then, F. J. Permana, and B. Yong, “PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 141-152, Jan. 2025.