HOW MANY SUBSETS WHICH THEIR OPERATIONS WITH A FIXED SUBSET CONTAIN AT LEAST ONE ELEMENT OF A GIVEN COLLECTION?

  • Muhammad Nurul Huda Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia https://orcid.org/0000-0002-1271-2684
  • Veni Rizki Lestari Ion Operation Unit Graha, Gamping, Sleman, Yogyakarta, Indonesia
Keywords: Binary Set Operations, Bonferroni’s Inequality, Corrádi’s Lemma, Hypergraph, Inclusion-Exclusion Principle

Abstract

We pose the following problem related to binary set operations on finite sets. Given a finite set . Let a binary set operation  and  be a non-empty collection of non-empty subsets of . For a fixed subset  of , where , how many subsets of  which their operation  with  contains at least one element of ?. In this paper, we give the solution of this problem, especially for the subsets of size , using the inclusion-exclusion principle, Corrádi’s lemma, and Bonferroni’s inequality. In this context, the problem is related to determining the degree of nodes in certain graphs, such as graphs constructed with the adjacency rule depends on  and the node set is a hypergraph.

Downloads

Download data is not yet available.

References

K. Dohmen, “Improved Bonferroni Inequalities via Union-Closed Set Systems,” J. Comb. Theory, Ser. A, vol. 92, pp. 61–67, 2000, doi: 10.1006/jcta.1999.3030.

K. Corrádi, “Problem at Schweitzer competition,” Mat. Lapok., vol. 20, pp. 159–162, 1969.

S. Jukna, Extremal Combinatorics With Applications in Computer Science. Berlin: Springer-Verlag Berlin Heidelberg, 2011.

X. Li, H. Broersma, and L. Wang, “Grow rates of the bipartite Erdős-Gyarfas function,” arXiv: 2111.00879 [math.CO], 2021.

C. Berge, Graphs and Hypergraphs. Amsterdam: North-Holland Publishing Company, 1973.

V. Blinovsky and C. Greenhill, “Asymptotic enumeration of sparse uniform hypergraphs with given degrees,” Eur. J. Comb., vol. 51, pp. 287–296, 2016, doi: 10.1016/j.ejc.2015.06.004.

X. Ouvrard, “Hypergraphs: an introduction and review,” arXiv: 2002.05014 [cs.DM], 2020.

M. M. Jadhav and K. F. Pawar, “On edge product number of hypergraph,” Palest. J. Math., vol. 11, no. 4, pp. 183–194, 2022.

V. Blinovsky and C. Greenhill, “Asymptotic enumeration of sparse uniform linear hypergraphs with given degrees,” Electron. J. Comb., vol. 23, no. 3, pp. 1–17, 2016, doi: 10.37236/5512.

M. Axenovich, D. Bradač, L. Gishboliner, D. Mubayi, and L. Weber, “Large cliques or cocliques in hypergraphs with forbidden order-size pairs,” Comb. Probab. Comput., pp. 286–299, 2023, doi: 10.1017/S0963548323000433.

M. N. Huda, “Graf subset tak seragam yang berasosiasi dengan sebarang graf,” Universitas Gadjah Mada, 2024.

R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood, “Token graphs,” Graphs Comb., vol. 28, pp. 365–380, 2012, doi: 10.1007/s00373-011-1055-9.

J. Zhang, J.-X. Zhou, Y.-T. Li, and Y. S. Kwon, “The automorphisms of 2-token graphs,” Appl. Math. Comput., vol. 446, 2023, doi: 10.1016/j.amc.2023.127872.

Y. Susanti, “On the 2-token graphs of some disjoint union of graph,” Malaysian J. Math. Sci., vol. 17, no. 4, pp. 719–730, 2023, doi: 10.47836/mjms.17.4.12.

A. Lew, “Garland’s method for token graphs,” arXiv: 2305.02406 [math.CO], 2023.

J. Leaños and C. Ndjatchi, “The edge-connectivity of token graphs,” Graphs Comb., vol. 37, pp. 1013–1023, 2021, doi: 10.1007/s00373-021-02301-0.

L. E. Adame, L. M. Rivera, and A. L. Trujillo-Negrete, “Hamiltonicity of token graphs of some join graphs,” Symmetry (Basel)., vol. 13, no. 6, 2021, doi: 10.3390/sym13061076.

W. Carballosa, R. Fabila-Monroy, J. Leanos, and L. M. Rivera, “Regularity and planarity of token graphs,” Discuss. Math. Graph Theory, vol. 37, pp. 573–586, 2017, [Online]. Available: http://dx.doi.org/10.7151/dmgt.1959.

C. Dalfó, F. Duque, R. Fabila-monroy, and M. A. Fiol, “On the Laplacian spectra of token graphs ✩,” Linear Algebra Appl., vol. 625, pp. 322–348, 2021, doi: 10.1016/j.laa.2021.05.005.

S. Barik and P. Verma, “Spectral properties of token graphs,” Linear Algebra Appl., vol. 687, pp. 181–206, 2024, doi: 10.1016/j.laa.2024.02.004.

C. Bagiński and P. Grzeszczuk, “On the generic family of Cayley graphs of a finite group,” J. Comb. Theory, Ser. A, vol. 184, p. 105495, 2021, doi: 10.1016/j.jcta.2021.105495.

Y. Susanti and A. Erfanian, “Prime square order Cayley graph of cyclic groups,” Asian-European J. Math., vol. 17, no. 2, 2024, doi: 10.1142/S1793557124500037.

X. Ma, H. Wei, and L. Yang, “The coprime graph of a group,” Int. J. Gr. Theory, vol. 3, no. 3, pp. 13–23, 2014.

F. Mansoori, A. Erfanian, and B. Tolue, “Non-coprime graph of a finite group,” 2016, [Online]. Available: https://doi.org/10.1063/1.4954605.

M. N. Huda and S. Ali, “Non-coprime graph energy of dihedral and symmetric group,” 2024.

M. N. Huda, “A note on hamiltonicity conditions of the coprime and non-coprime graphs of a finite group,” J. Mat. UNAND, vol. 13, no. 3, pp. 157–162, 2024.

Published
2024-10-11
How to Cite
[1]
M. Huda and V. Lestari, “HOW MANY SUBSETS WHICH THEIR OPERATIONS WITH A FIXED SUBSET CONTAIN AT LEAST ONE ELEMENT OF A GIVEN COLLECTION?”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2543-2554, Oct. 2024.