APPLICATION OF DETERMINISTIC MODEL FOR HYPERTENSION CASES

  • Mario Nikolaus Dalengkade Department of Mathematics, Faculty of Natural Sciences and Engineering Technology, Universitas Halmahera, Indonesia https://orcid.org/0000-0003-4297-8296
  • Martina Hayati Department of Mathematics, Faculty of Natural Sciences and Engineering Technology, Universitas Halmahera, Indonesia
  • Dwi Rahayu Pujiastuti Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Indonesia https://orcid.org/0009-0008-8877-0259
Keywords: Hypertension, Mathematics, Deterministic, Differential

Abstract

World Health Organization (WHO) latest reports about hypertension as a global health problem, due to a spike in cases. One of the roles of mathematics in health is to provide information about the increase in hypertension sufferers. Using a deterministic model is supposed to provide information that can explain how the cases increase. The deterministic model used is divided into two equations. The first equation uses k as a constant. Second, is p for p < 1 and p > 1. The results from both equations are in the form of a logistic curve and show simulation results are similar to condition data for hypertension sufferers. In addition, the extended deterministic model with p <1 indicates that hypertension sufferers increase exponentially, thus an intervention step is needed.

Downloads

Download data is not yet available.

References

P. Nugroho, H. Andrew, K. Kohar, C. A. Noor, and A. L. Sutranto, “Comparison between the world health organization (WHO) and international society of hypertension (ISH) guidelines for hypertension,” Ann. Med., vol. 54, no. 1, pp. 837–845, Dec. 2022, doi: 10.1080/07853890.2022.2044510.

World Health Organization (WHO), Global Report on Hypertension: The Race Against a Silent Killer. Genewa: World Health Organization, 2023.

K. K. R. I. (Kemenskes), Hasil Utama RISKESDAS. Indonesia, 2018.

T. Adiwati and N. Chamidah, “Modelling of hypertension risk factors using penalized spline to prevent hypertension in Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 5, p. 052003, Jun. 2019, doi: 10.1088/1757-899X/546/5/052003.

P. Andriani and N. Chamidah, “Modelling of Hypertension Risk Factors Using Logistic Regression to Prevent Hypertension in Indonesia,” J. Phys. Conf. Ser., vol. 1306, no. 1, p. 012027, Aug. 2019, doi: 10.1088/1742-6596/1306/1/012027.

M. N. Dalengkade, M. Yusniar, W. Tjape, F. I. Boleu, and O. Buka, “Penerapan polinomial orde-n dan Malthusian pada studi kasus kajian daya tampung wisatawan,” JST Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 220–229, Nov. 2021, doi: 10.23887/jstundiksha.v10i2.38969.

M. Kaseside, F. Imanuel Boleu, R. Simanjuntak, B. Raymond Toisuta, and M. Nikolaus Dalengkade, “Penerapan model Malthusian, studi kasus: ambang batas destinasi wisata talaga biru,” JUSTE Journal Sci. Technol., vol. 2, no. 1, pp. 52–58, Oct. 2021, doi: 10.51135/justevol2issue1page52-58.

M. N. Dalengkade et al., “Visit profiles and tourism destination thresholds using polynomial and Malthusian,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 113–120, Mar. 2022, doi: 10.30598/barekengvol16iss1pp113-120.

T. Waezizadeh, A. Mehrpooya, M. Rezaeizadeh, and S. Yarahmadian, “Mathematical models for the effects of hypertension and stress on kidney and their uncertainty,” Math. Biosci., vol. 305, pp. 77–95, Nov. 2018, doi: 10.1016/j.mbs.2018.08.013.

W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, vol. 115, no. 772, pp. 700–721, Aug. 1927, doi: 10.1098/rspa.1927.0118.

N. T. J. Bailey, The mathematical theory of Infectious Diseases and its Applications, Second Edi. London: Charles Griffin & Company LTD, 1975.

R. Detels, R. Beaglehole, M. A. Lansang, and M. Gulliford, Oxford Textbook of Public Health, no. May. Oxford University Press, 2009. doi: 10.1093/med/9780199218707.001.0001.

M. J. Keeling and P. Rohani, Modeling Infectioous Diseases: In Human and Animals. United Kingdom: Princeton University Press, 2008.

T. C. Reluga, “Game theory of social distancing in response to an epidemic,” PLoS Comput. Biol., vol. 6, no. 5, p. e1000793, May 2010, doi: 10.1371/journal.pcbi.1000793.

S. E. Eikenberry et al., “To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic,” Infect. Dis. Model., vol. 5, pp. 293–308, 2020, doi: 10.1016/j.idm.2020.04.001.

S. Towers, K. Vogt Geisse, Y. Zheng, and Z. Feng, “Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model,” J. Theor. Biol., vol. 289, no. 1, pp. 259–268, Nov. 2011, doi: 10.1016/j.jtbi.2011.08.011.

K. C. Ang, “A simple model for a SARS epidemic,” Teach. Math. its Appl., vol. 23, no. 4, pp. 181–188, Dec. 2004, doi: 10.1093/teamat/23.4.181.

N. C. Grassly and C. Fraser, “Mathematical models of infectious disease transmission,” Nat. Rev. Microbiol., vol. 6, no. 6, pp. 477–487, Jun. 2008, doi: 10.1038/nrmicro1845.

T. P. Dreyer, Modelling with Ordinary Differential Equations. Boca Raton: CRC Press, 1993.

F. R. Giordano, W. P. Fox, and S. B. Horton, A First Course in Mathematical Modeling, Fifth Edit. USA: Richard Stratton, 2014.

D. A. Lawson, “Stopping distances: an excellent example of empirical modelling,” Teach. Math. its Appl., vol. 20, no. 2, pp. 66–74, Jun. 2001, doi: 10.1093/teamat/20.2.66.

Z. Wilstein, D. M. Alligood, V. L. McLure, and A. C. Miller, “Mathematical model of hypertension-induced arterial remodeling: A chemo-mechanical approach,” Math. Biosci., vol. 303, no. May, pp. 10–25, Sep. 2018, doi: 10.1016/j.mbs.2018.05.002.

A. Tsamis and N. Stergiopulos, “Arterial remodeling in response to hypertension using a constituent-based model,” Am. J. Physiol. Circ. Physiol., vol. 293, no. 5, pp. H3130–H3139, Nov. 2007, doi: 10.1152/ajpheart.00684.2007.

A. Tsamis, N. Stergiopulos, and A. Rachev, “A structure-based model of arterial remodeling in response to sustained hypertension,” J. Biomech. Eng., vol. 131, no. 10, pp. 1–8, Oct. 2009, doi: 10.1115/1.3192142.

C. Castillo-Chavez, S. Fridman, and X. Luo, “Stochastic and deterministic models in epidemiology,” in World Congress of Nonlinear Analysts ’92, DE GRUYTER, 1996, pp. 3211–3226. doi: 10.1515/9783110883237.3211.

D. Olabode, J. Culp, A. Fisher, A. Tower, D. Hull-Nye, and X. Wang, “Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China,” Math. Biosci. Eng., vol. 18, no. 1, pp. 950–967, 2021, doi: 10.3934/mbe.2021050.

E. Pelinovsky, A. Kurkin, O. Kurkina, M. Kokoulina, and A. Epifanova, “Logistic equation and COVID-19,” Chaos, Solitons & Fractals, vol. 140, p. 110241, Nov. 2020, doi: 10.1016/j.chaos.2020.110241.

E. Aviv-Sharon and A. Aharoni, “Generalized logistic growth modeling of the COVID-19 pandemic in Asia,” Infect. Dis. Model., vol. 5, pp. 502–509, 2020, doi: 10.1016/j.idm.2020.07.003.

N. Balak et al., “A simple mathematical tool to forecast COVID-19 cumulative case numbers,” Clin. Epidemiol. Glob. Heal., vol. 12, no. January, p. 100853, Oct. 2021, doi: 10.1016/j.cegh.2021.100853.

G. K. Mutua, C. G. Ngari, G. G. Muthuri, and D. M. Kitavi, “Mathematical modeling and simulating of Helicobacter pylori treatment and transmission implications on stomach cancer dynamics,” Commun. Math. Biol. Neurosci., vol. 2022, no. August, 2022, doi: 10.28919/cmbn/7542.

Published
2025-01-13
How to Cite
[1]
M. Dalengkade, M. Hayati, and D. Pujiastuti, “APPLICATION OF DETERMINISTIC MODEL FOR HYPERTENSION CASES”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 345-352, Jan. 2025.