ESTIMASI PARAMETER MODEL PROBIT PADA DATA PANEL MENGGUNAKAN OPTIMASI BFGS
Abstract
One model that may explain the pattern of the relationship between the categorical dependent variable and the independent variables is probit regression. In the probit regression, the independent variable can be categorical or continuous. Probit regression is using the link function of the standard normal distribution. If the probit regression modeling involves a cross-section data and time series data, it is called probit data panel model. Parameter estimation of random effect probit data panel model is using the maximum likelihood estimation (MLE) method with Gauss Hermite Quadrature approach. Iterative procedure by using BFGS method. BFGS method used to obtain the close form value of the parameter estimates.
Downloads
References
A. Agresti, Categorical Data Analysis, Second. Gainesville, Florida: John Wiley & Sons, Inc, 2002.
J. Aldrich and F. Nelson, Linear probability logit and probit models, vol. 8, no. 6. Lowa: Sara Miller McCune, Sage Publications, Inc., 1987.
C. I. Bliss, “The Method of Probits,†Science (80-. )., vol. 79, no. 2037, pp. 38–39, 1934, doi: 10.1126/science.79.2037.38.
M. Astsaqofi, “Analisis Regresi Probit dengan Efek Interaksi untuk Memodelkan Indeks Pembangunan Manusia di Indonesia,†Institut Teknologi Sepuluh Nopember, 2016.
N. Dwitiyanti, “Model regresi probit bivariat,†Fakt. Exacta, vol. 10, no. 3, pp. 210–216, 2017, doi: https://dx.doi.org/10.30998/faktorexacta.v10i3.1336.
T. Nurseto, B. Suprayitno, and Mustofa, “Penggunaan Model Probit Untuk Melakukan Peramalan Pencapaian Hasil Belajar Mata Kuliah Kuantitatif,†Pros. Semin. Nas. …, pp. 597–613, 2015.
G. M. Tinungki, “Aplikasi Model Regresi Logit dan Probit pada Data Kategorik,†J. Mat. Stat. Komputasi, vol. 6, no. 2, pp. 107–114, 2010.
B. Sari and F. Widjajati, “Model Regresi Probit Bivariat pada Kasus Penderita HIV dan AIDS di Jawa Timur,†J. Sains dan Seni ITS, vol. 4, no. 2, pp. A61–A66, 2015.
F. I. Puspita, V. Ratnasari, and P. Purhadi, “Model Probit Spasial pada Faktor-Faktor yang Mempengaruhi Klasifikasi IPM di Pulau Jawa,†Cauchy, vol. 2, no. 4, p. 198, 2013, doi: 10.18860/ca.v2i4.3116.
E. Wulandari and H. Trisutanto, “Model regresi probit untuk mengetahui faktor-faktor yang mempengaruhi jumlah penderita diare di Jawa Timur,†MATHunesa, vol. 2, no. 1, pp. 1–6, 2010.
R. R. Utami, “Analisis Regresi Probit Biner pada Faktor-Faktor yang Mempengaruhi Kemiskinan Rumah Tangga di Kecamatan Pujut Kabupaten Lombok Tengah,†Universitas Mataram, 2018.
D. Andriani, S. Wahyuningsih, and Y. N. Nasution, “Pemodelan Regresi Probit Ordinal Pada Kasus Penentuan Predikat Kelulusan Mahasiswa FMIPA Universitas Mulawarman Tahun 2014,†Pros. Semin. Sains dan Teknol. FMIPA Unmul, pp. 513–520, 2016.
T. Malldina, B. Tantular, D. Y. Faidah, and G. Darmawan, “Analisis Regresi Probit Untuk Menentukan Peluang Kemenangan Pemain Dalam Permainan Age of Empire 2,†Pros. Semin. Nas. MIPA 2016, pp. 17–20, 2016.
A. Agustina, “Pemodelan Faktor Risiko yang Berhubungan dengan Tingkat Keparahan Pelaku Kecelakaan Lalu Lintas di Kabupaten Tuban Jawa Timur dengan Regresi Logistik Ordinal,†J. Ilm. Kesehat. Media Husada, vol. 05, no. 2, pp. 119–127, 2016.
Rahmadeni and V. Yunita, “Pemodelan Indeks Pembangunan Manusia di Provinsi Riau dengan Menggunakan Regresi Logistik Ordinal,†J. Sains Mat. dan Stat., vol. 5, no. 1, pp. 120–126, 2019.
N. G. K. T. PRADNYANTARI, I. K. G. SUKARSA, and N. L. P. SUCIPTAWATI, “Penerapan Regresi Probit Bivariat untuk Menduga Faktor-Faktor yang Memengaruhi Kelulusan Mahasiswa (Studi Kasus: Mahasiswa Fakultas MIPA Unversitas Udayana),†E-Jurnal Mat., vol. 4, no. 2, pp. 49–53, 2015, doi: 10.24843/mtk.2015.v04.i02.p088.
W. Greene, Análisis econométrico, 7th ed. New York: Pearson, 2008.
G. S. Maddala, “Limited Dependent Variable Models Using Panel Data,†J. Hum. Resour., vol. 22, no. 3, pp. 307–338, 1987, doi: 10.2307/145742.
M. N. Harris, L. R. Macquarie, and A. J. Siouclis, “A Comparison of Alternative Estimators for Binary Panel Probit Models,†Melb. Inst. Work. Pap., vol. No. 3/00, no. June, pp. 0–20, 2000.
J. S. Butler and R. Moffitt, “A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model,†Econometrica, vol. 50, no. 6, p. 1596, 1982, doi: 10.2307/1913405.
E. Chong and S. Zak, An Introduction to Optimization, Second Edi. New York: John Wiley & Sons, Inc, 2001.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.