NUMERICAL SOLUTION OF THE SEIR MODEL USING THE FOURTH-ORDER RUNGE-KUTTA METHOD TO PREDICT THE SPREAD OF HEPATITIS B DISEASE IN AMBON CITY
Abstract
Hepatitis B is a dangerous type of hepatitis and has a high risk of death. This research aims to predict the spread of Hepatitis B in Ambon using the fourth-order Runge-Kutta method. The mathematical model for the spread of Hepatitis B takes the form of a system of differential equations that includes the variables Susceptible (S) namely the subpopulation that is susceptible to infection with the hepatitis B virus, Exposed (E), namely the subpopulation that is exposed to the hepatitis B virus when it comes into contact with the Infected (I) subpopulation, I, namely the subpopulation infected with hepatitis B and Recovered (R), namely the recovered subpopulation. The values , , , , , , , and are the parameter values used to be solved numerically using the fourth order Runge Kutta method which was carried out in 20 iterations with step size h=1 using data from the Maluku Provincial Health Service and the Central Bureau of Statistics from 2013 to 2022. Hepatitis B is classified as a type of hepatitis disease that is dangerous and has a high risk of death. This study aimed to construct a model of the spread of Hepatitis B disease in Ambon City and solve the model using the fourth-order Runge-Kutta method. In the research results, it was obtained that subpopulation decreased significantly in the 20th year with a total of 299,239 people, for subpopulation increased in 18th year with a total of 4,309 people, and decreased in 20th year with a total of 4,298 people, for subpopulation subpopulation increased until 20th year with a total of 254 people, and for subpopulation subpopulation increased significantly in 20th year with a total of 10,776 people.
Downloads
References
Rif’a Atul Hasanah, “Pemodelan Seiv Penyebaran Penyakit Hepatitis B,” Universitas Islam Negeri Sunan Ampel, Surabaya, 2019.
Kementrian Kesehatan Republik Indonesia, “Situasi Penyakit Hepatitis B di Indonesia tahun 2017,” Oct. 2018.
E. Bormasa, D. L. Rahakbauw, and D. Patty, “PEMODELAN PENULARAN PENYAKIT HEPATITIS MENGGUNAKAN MODEL SEIR,” Amalgamasi: Journal of Mathematics and Applications, vol. 1, no. 2, pp. 54–63, Nov. 2022, doi: 10.55098/amalgamasi.v1.i2.pp54-63.
WHO, “Combating Hepatitis B and C to Reach Elimination by 2030,” 2016.
Imam Satriyah Sair, “Solusi Numerik Model Penyakit Hepatitis B Menggunakan Metode Runge-Kutta Orde Empat,” 12637829, 2018.
Agrippina, “Pemodelan matematis penyebaran virus Hepatitis B dan penyelesaian numerisnya berdasarkan metode Runge-Kutta Orde Empat,” Sanata Dharma University., Yogyakarta, 2021.
S. Side, M. S. Wahyuni, and Muh. Rifki, “Solusi Numerik Model SIR pada Penyebaran Penyakit Hepatitis B dengan Metode Perturbasi Homotopi di Provinsi Sulawesi Selatan,” Journal of Mathematics Computations and Statistics, vol. 3, no. 2, p. 79, Oct. 2020, doi: 10.35580/jmathcos.v3i2.20122.
R. Ashgi, S. Purwani, and N. Anggriani, “Analisis Dinamik Penyebaran Model COVID-19dengan Faktor Vaksinasi dengan menggunakan Metode Runge-Kutta Fehlberg,” Jurnal Matematika Integratif, vol. 18, no. 2, p. 115, Dec. 2022, doi: 10.24198/jmi.v18.n2.40224.115-126.
K. Q. Fredlina, T. B. Oka, I. Made, E. Dwipayana, and J. Matematika, “1 Mahasiswa Jurusan Matematika FMIPA Universitas Udayana 2,3 Staf Pengajar Jurusan Matematika FMIPA Universitas Udayana,” 2012.
N. M. K. Yudhi, “ANALISIS KESTABILAN MODEL PENYEBARAN PENYAKIT HEPATITIS A DENGAN VAKSINASI DAN SANITASI,” Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 8, no. 2, Apr. 2019, doi: 10.26418/bbimst.v8i2.32490.
M. Rijoly, R. F. Muin, F. Y. Rumlawang, and B. P. Tomasouw, “Solusi Numerik Model Sir Dengan Menggunakan Metode Runge-Kutta Orde Empat Dalam Prediksi Penyebaran Virus COVID-19Di Provinsi Maluku,” Tensor: Pure and Applied Mathematics Journal, vol. 3, no. 2, pp. 93–100, Nov. 2022, doi: 10.30598/tensorvol3iss2pp93-100.
M. E. Rijoly, Y. A. Lesnussa, Y. A. Lesnussa, and N. T. Sapulette, “Numerical Solution Of The SIRV Model Using The Fourth-Order Runge-Kutta Method,” Jurnal Matematika, vol. 13, no. 2, p. 105, Feb. 2024, doi: 10.24843/JMAT.2023.v13.i02.p164.
Badan Pusat Statistika Kota Ambon, “Kota Ambon Dalam Angka tahun 2020,” Ambon, 2021.
Badan Pusat Statistika Kota Ambon, “Kota Ambon Dalam Angka tahun 2021,” Ambon, 2022.
Badan Pusat Statistika Kota Ambon, “Kota Ambon Dalam Angka tahun 2019,” Ambon, 2020.
Badan Pusat Statistika Kota Ambon, “Kota Ambon Dalam Angka tahun 2018,” Ambon, 2019.
Badan Pusat Statistika Kota Ambon, “Kota Ambon Dalam Angka tahun 2017,” Ambon, 2018.
M. Nalurita Serlaloy, M. E. Rijoly, Z. Arthur Leleury, P. Studi Matematika Jurusan Matematika Fakultas MIPA Universitas Pattimura, and L. Matematika Terapan Jurusan Matematika Fakultas MIPA Universitas Pattimura, “Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika SOLUSI NUMERIK MODEL SITA MENGGUNAKAN METODE RUNGE KUTTA FEHLBERG UNTUK MEMPREDIKSI PENYEBARAN PENYAKIT HIV/AIDS DI PROVINSI MALUKU”, doi: 10.30605/proximal.v5i2.4021.
Badan Pusat Statistika Provinsi Maluku, “Angka Harapan Hidup (AHH) Saat Lahir Tahun 2022,” Maluku, 2023.
N. T. Sapulette, Y. A. Lesnussa, and M. E. Rijoly, “Dynamics Of A Sirv Model For The Spread Of Covid-19in Maluku Province,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1673–1684, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1673-1684.
Copyright (c) 2024 Anita Papalia, Yopi Andry Lesnussa, Monalisa E. Rijoly, Olumuyiwa James Peter
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.