THE EXPLOITATION STATUS OF WORKING SCHOOL-AGE CHILDREN IN INDONESIA: A MULTILEVEL BINARY LOGISTIC REGRESSION ANALYSIS

Keywords: Exploitation Status, Multilevel Analysis, Working School-Age Children

Abstract

Many children in Indonesia are exploited in the workforce. In 2022, 12.22 percent of school-age children worked more than 40 hours per week. Children are considered exploited if they work more than 20 hours a week. Children who work for a long time have serious impacts. This study aims to determine a general picture of the exploitation of working school-age children in Indonesia and its influence factors. This study uses the March 2023 Socioeconomic Survey (SUSENAS) data by utilizing multilevel analysis specifically the two-level binary logistic regression method. The study results showed that 54.22 percent of school-age children are working and exploited in Indonesia. The individual and regional contextual factors that are significantly associated with the exploitation status of working school-age children are age, sex, education level, education of household head, sex of household head, employment status of household head, Smart Indonesia Programme (PIP) ownership status, family size, expected years of schooling (HLS), and poverty level. This study finds that increasing age, male sex, lack of access to the PIP, low household head education, female-headed households, unemployed household heads, and larger household sizes increased the likelihood of child exploitation. Moreover, children residing in districts with lower HLS scores had a higher chance of being exploited. These findings highlight the importance of considering both individual and regional contextual factors when addressing child exploitation. A two-level binary logistic regression model with random effects provides a better fit than the intercept-only model. Therefore, it is recommended to prioritize interventions for children without access to the PIP and those from household heads with low education levels. Furthermore, programs emphasizing the importance of education for children should be strengthened.

Downloads

Download data is not yet available.

References

BPS, “Booklet Pekerja Anak di Indonesia 2022 Sebelum dan Semasa Pandemi COVID-19,” Badan Pus. Stat., 2022, [Online]. Available: https://www.bps.go.id/id/publication/2023/01/24/26f9953aa34944a5ad539815/booklet-pekerja-anak-di-indonesia-2022-sebelum-dan-semasa-pandemi-covid-19-.html.

Kementerian Pemberdayaan Perempuan dan Perlindungan Anak, Profil Anak Indonesia 2022. 2022.

B. S. Iryani and D. S. Priyarsono, “Jurnal Ekonomi dan Pembangunan Indonesia Eksploitasi terhadap Anak yang Bekerja di Indonesia Eksploitasi terhadap Anak yang Bekerja di Indonesia Exploitation of Working Children in Indonesia Pendahuluan Anak adalah anugerah terindah bagi setiap,” vol. 13, no. 2, 2013, doi: 10.21002/jepi.v13i2.05.

B. Mengge, “Fishing Community in Patron-Client Relationship and Exploitation (A Case of Small-Scale Fishing Community in Makassar),” Int. J. Humanit. Soc. Sci., vol. 9, no. 2, pp. 110–117, 2019, doi: 10.30845/ijhss.v9n2p14.

I. Wahyuni, “Meningkatnya Pekerja Anak (Studi Konsep Maslahah),” Wahana Akad. J. Stud. Islam dan Sos., vol. 4, no. 1, p. 45, 2017, doi: 10.21580/wa.v4i1.1478.

A. Ibrahim, S. M. Abdalla, M. Jafer, J. Abdelgadir, and N. De Vries, “Child labor and health: A systematic literature review of the impacts of child labor on child’s health in low- and middle-income countries,” J. Public Heal. (United Kingdom), vol. 41, no. 1, pp. 18–26, 2019, doi: 10.1093/pubmed/fdy018.

Kementerian Pemberdayaan Perempuan dan Perlindungan Anak, Profil Anak Indonesia 2023. 2023.

A. I. Ariani, A. S. Alimsyah, A. Ikramullah, S. Tinggi, and I. E. Bongaya, “Eksploitasi Anak di Kota Makassar: Studi Kasus Anak Dipekerjakan Paksa Orangtua,” Indones. Annu. Conf. Ser., vol. 1, pp. 122–126, 2022, [Online]. Available: https://ojs.literacyinstitute.org/index.php/iacseries/article/view/645.

L. Octavia Wardana and L. Kurnia Sari, “Analisis Faktor-Faktor Yang Memengaruhi Eksploitasi Pekerja Anak Di Indonesia Menggunakan Regresi Logistik Biner,” Indones. J. Stat. Its Appl., vol. 4, no. 3, pp. 432–447, 2020, doi: 10.29244/ijsa.v4i3.616.

L. Kurnia Sari and K. T. Wahyuni, “Analisis Eksploitasi Pekerja Anak dari Sisi Pendidikan di Pulau Jawa dengan Regresi Logistik Biner Multilevel,” J. Stat. dan Apl., vol. 6, no. 1, pp. 62–73, 2022, doi: 10.21009/jsa.06106.

H. Usman, “Determinan dan Eksploitasi Pekerja Anak Indonesia,” 2002.

F. Magdalena, S. Sukamdi, and A. Rofi, “The Determinants of Child Labor Participation in Indonesia: A Multilevel Approach,” Southeast Asian J. Econ., vol. 9, no. 3, pp. 75–108, 2021.

I. Ariyanti, Socio economic factors affecting the child labour in Palembang city Indonesia, vol. 21, no. 2. 2016.

R. D. Aisy and F. Nailufar, “Pengaruh Tingkat Kemiskinan Dan Angka Putus Sekolah Terhadap Pekerja Anak Di Indonesia,” J. Ekon. Indones., vol. 11, no. 1, p. 21, 2022, doi: 10.29103/ekonomika.v11i1.7727.

M. A. Geminata, “Determinan Keputusan Anak Bekerja Di Kota Palembang,” J. Inform. Ekon. Bisnis, vol. 5, pp. 720–730, 2023, doi: 10.37034/infeb.v5i3.627.

World Bank, Towards a Comprehensive , Integrated , and Effective Social Assistance System in Indonesia. 2017.

E. Webbink, J. Smits, and E. de Jong, “Household and Context Determinants of Child Labor in 221 Districts of 18 Developing Countries,” Soc. Indic. Res., vol. 110, no. 2, pp. 819–836, 2013, doi: 10.1007/s11205-011-9960-0.

T. B. Gunawan, “Pengaruh Gender terhadap Keputusan Anak Bekerja di Indonesia,” J. Ketenagakerjaan, vol. 14, no. 1, pp. 1907–6096, 2019.

O. Thévenon and E. Edmonds, “Child labour: Causes, consequences and policies to tackle it,” OECD Soc. Employment, Migr. Work. Pap., no. 235, pp. 4–82, 2019, doi: Olivier Thévenon, Eric Edmonds https://dx.doi.org/10.1787/f6883e26-en.

J. J. Hox and K. J. Roberts, Handbook of Advanced Multilevel Analysis. Routledge, 2011.

J. Harlan, Buku Analisis Multilevel. Depok: Gunadarma, 2016.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression Analysis, vol. 38, no. 2. 2013.

L. Muthen and B. Muthen, Mplus Version 8 User’s Guide. Muthen & Muthen, 2017.

J. J. Hox, M. Moerbeek, and R. van de Schoot, Multilevel Analysis: Techniques and Analysis, vol. 148. 2017.

E. C. Hedberg and L. V. Hedges, “Reference Values of Within-District Intraclass Correlations of Academic Achievement by District Characteristics: Results From a Meta-Analysis of District-Specific Values,” Eval. Rev., vol. 38, no. 6, pp. 546–582, 2014, doi: 10.1177/0193841X14554212.

A. Field, Discovering statistics using IBM SPSS statistics (5th ed.). SAGE, 2018.

N. Sommet and D. Morselli, “Keep calm and learn multilevel linear modeling: A three-step procedure using SPSS, Stata, R, and Mplus,” Int. Rev. Soc. Psychol., vol. 34, no. 1, pp. 203–218, 2021, doi: 10.5334/irsp.555.

H. Bozdogan, “Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions,” Psychometrika, vol. 52, no. 3, pp. 345–370, 1987, doi: 10.1007/BF02294361.

A. Maulana and N. Suryaningrum, “Pengaruh Kemiskinan Terhadap Pekerja Anak Indonesia: Analisis Data Mikro,” J. Din. Ekon. Pembang., vol. 5, no. 3, pp. 258–269, 2023, doi: 10.14710/jdep.5.3.258-269.

BPS, Statistik Pendidikan 2023, vol. 12. Jakarta, 2023.

International Labour Office and United Children’s Fund, Child labour: Global Estimates 2020, Trends and The Road Forward, vol. 6, no. 2. New York, 2021.

O. Adonteng-Kissi, “Causes of child labour: Perceptions of rural and urban parents in Ghana,” Child. Youth Serv. Rev., vol. 91, no. 2017, pp. 55–65, 2018, doi: 10.1016/j.childyouth.2018.05.034.

T. H. T. Gim, “Full random coefficients multilevel modeling of the relationship between land use and trip time on weekdays and weekends,” Sustain., vol. 9, no. 10, 2017, doi: 10.3390/su9101824.

M. Tienda, “Economic Activity of Children in Peru: Labor Force Behavior in Rural and Urban Contexts,” Rural Sociol., vol. 44, no. 2, 1979.

D. Satriawan, “Pekerja Anak Sektor Informal di Indonesia: Situasi Terkini dan Tantangan ke depan (Analisis Data Susenas 2019),” J. Ketenagakerjaan, vol. 16, no. 1, 2021.

T. Y. Kembuan, J. N. Matheosz, and M. H. Pratiknjo, “Kehidupan Pengamen Jalanan Di Kawasan Boulevard Kota Manado,” vol. 14, no. 1, 2021.

G. M. Dotti Sani, “Undoing Gender in Housework? Participation in Domestic Chores by Italian Fathers and Children of Different Ages,” Sex Roles, vol. 74, no. 9–10, pp. 411–421, 2016, doi: 10.1007/s11199-016-0585-2.

N. Nurwati, “Pengaruh kondisi sosial dan ekonomi keluarga terhadap motivasi pekerja anak dalam membantu keluarga di Kabupaten Cirebon, Jawa Barat,” J. Kependud. Padjajaran, vol. 10, no. 2, 2008.

W. Wahyuni and L. K. Sari, “Determinan Eksploitasi Pekerja Anak Sektor Informal dari Sisi Jam Kerja di Indonesia Tahun 2021,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 225–234, 2022, doi: 10.34123/semnasoffstat.v2022i1.1319.

H. A. Patrinos and G. Psacharopoulos, “Family size, Schooling and Child Labor in Peru.,” J. Popul. Econ., vol. 10, pp. 387–405, 1997, [Online]. Available: https://link.springer.com/content/pdf/10.1007%2Fs001480050050.pdf.

J. de Hoop and F. C. Rosati, “Cash Transfers and Child Labor,” World Bank Res. Obs., vol. 29, no. 2, pp. 202–234, 2014, doi: 10.1093/wbro/lku003.

BPS, Statistik Penunjang Pendidikan 2021. Jakarta: Badan Pusat Statistik, 2021.

G. Nattino, M. L. Pennell, and S. Lemeshow, “Assessing the goodness of fit of logistic regression models in large samples: A modification of the Hosmer-Lemeshow test,” Biometrics, vol. 76, no. 2, pp. 549–560, 2020, doi: 10.1111/biom.13249.

Published
2025-01-13
How to Cite
[1]
S. Ariansyah and T. H. Siagian, “THE EXPLOITATION STATUS OF WORKING SCHOOL-AGE CHILDREN IN INDONESIA: A MULTILEVEL BINARY LOGISTIC REGRESSION ANALYSIS”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 291-302, Jan. 2025.