THE LOCATING CHROMATIC NUMBER OF CHAIN(A,4,n) GRAPH

  • Des Welyyanti Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia https://orcid.org/0000-0002-9614-8987
  • Latifa Azhar Abel Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia https://orcid.org/0009-0000-7352-1622
  • Lyra Yulianti Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia https://orcid.org/0000-0002-7982-121X
Keywords: Chain Graph, Color Code, Locating Chromatic Number

Abstract

Let  be a connected graph with a vertex coloringsuch that two adjacent vertices have different colors. We denote an ordered partition  where  is a color class with color-, consisting of vertices given color , for . The color code of a vertex  in  is a -vector: . where  is the distance between a vertex  in  and  for . If every two vertices  and  in  have different color codes, , then  is called the locating -coloring of . The minimum number of colors k needed in this coloring is defined as the locating chromatic number, denoted by . This paper determines the locating chromatic number of chain graph and the induction of two graphs . Graph  is a cyclic graph , which is the identification of , for n>2.

Downloads

Download data is not yet available.

References

G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, The locating-chromatic number of a graph. 2002.

R. Diestel, “Graph Theory,” USA. [Online]. Available: http://www.springer.com/series/136

D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, “On Locating-chromatic Number for Graphs with Dominant Vertices,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 89–92. doi: 10.1016/j.procs.2015.12.081.

D. Wellyanti, N. Andriani, and L. Yulianti, “Bilangan Kromatik Lokasi Pada Graf Amalgamasi Kipas Berekor,” Limits J. Math. Its Appl., vol. 20, no. 1, p. 81, Mar. 2023, doi: 10.12962/limits.v20i1.12948.

M. R. Syafnur, L. Yulianti, and D. Welyyanti, “Penentuan Bilangan Kromatik Lokasi Untuk Graf Berlian Brn Untuk n=3 dan n=4,” J. Mat. UNAND, pp. 105–111, 2018.

E. Tri Baskoro and Asmiati, “Characterizing all trees with locating-chromatic number 3,” 2013. [Online]. Available: www.ejgta.org

E. T. Baskoro and D. I. D. Primaskun, “Improved algorithm for the locating-chromatic number of trees,” Theor. Comput. Sci., vol. 856, pp. 165–168, Feb. 2021, doi: 10.1016/j.tcs.2020.12.037.

H. Assiyatun, D. K. Syofyan, and E. T. Baskoro, “Calculating an upper bound of the locating-chromatic number of trees,” Theor. Comput. Sci., vol. 806, pp. 305–309, Feb. 2020, doi: 10.1016/j.tcs.2019.04.011.

M. Ghanem, H. Al-Ezeh, and A. Dabbour, “Locating chromatic number of powers of paths and cycles,” Symmetry (Basel)., vol. 11, no. 3, Mar. 2019, doi: 10.3390/sym11030389.

A. Irawan, A. Asmiati, L. Zakaria, and K. Muludi, “The locating-chromatic number of origami graphs,” Algorithms, vol. 14, no. 6, 2021, doi: 10.3390/a14060167.

Asmiati, I. K. Sadha Gunce Yana, and L. Yulianti, “On the Locating Chromatic Number of Certain Barbell Graphs,” Int. J. Math. Math. Sci., vol. 2018, 2018, doi: 10.1155/2018/5327504.

D. O. Haryeni and E. T. Baskoro, “Graphs with Partition Dimension 3 and Locating-chromatic Number 4,” Scitepress, Aug. 2022, pp. 14–19. doi: 10.5220/0009876400002775.

K. Prawinasti, M. Ansori, Asmiati, Notiragayu, and A. R. G N Rofi, “The Locating Chromatic Number for Split Graph of Cycle,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1742-6596/1751/1/012009.

M. Azhari, D. Welyyanti, and Effendi, “BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DENGAN GRAF LINTASAN DAN LIMA BINTANG GANDA SEBAGAI KOMPONEN-KOMPONENNYA,” J. Mat. UNAND, vol. 3, pp. 256–261, 2020.

F. Zikra, D. Welyyanti, and L. Yulianti, “Bilangan Kromatik Lokasi Gabungan Dua Graf Kipas Fn Untuk beberapa n, n lebih besar sama dengan 3,” J. Mat. UNAND, pp. 159–170, 2022.

D. Welyyanti, R. Lestari, and S. Rahma Putri, “The locating chromatic number of disconnected graph with path and cycle graph as its components,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1317/1/012021.

D. Welyyanti, M. Azhari, and R. Lestari, “On Locating Chromatic Number of Disconnected Graph .......,” J. Phys. Conf. Ser., vol. 1940, no. 1, p. 012019, Jun. 2021, doi: 10.1088/1742-6596/1940/1/012019.

D. Welyyanti, R. Simanjuntak, S. Uttunggadewa, and E. T. Baskoro, “Locating-chromatic number for a graph of two components,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2016. doi: 10.1063/1.4940825.

Published
2025-01-13
How to Cite
[1]
D. Welyyanti, L. A. Abel, and L. Yulianti, “THE LOCATING CHROMATIC NUMBER OF CHAIN(A,4,n) GRAPH”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 353-360, Jan. 2025.