PREDICTION INDONESIA COMPOSITE INDEX USING INTEGRATION DECOMPOSITION- NEURAL NETWORK ENSEMBLE DURING VUCA ERA

  • Imelda Saluza Department of Computer Science, Universitas Indo Global Mandiri, Indonesia https://orcid.org/0000-0003-0278-4315
  • Ensiwi Munarsih Pharmacy, School of Pharmacy Bhakti Pertiwi, Indonesia
  • Faradillah Faradillah Department of Computer Science, Universitas Indo Global Mandiri, Indonesia
  • Leriza Desitama Anggraini Department of Economic, Universitas Indo Global Mandiri, Indonesia
Keywords: VUCA, ICI, PCA, NN, Ensemble

Abstract

The Volatility, Uncertainty, Complexity, and Ambiguity (VUCA) era causes turmoil in the capital markets, stocks, commodities, etc. The impact is a decline in the Composite Stock Price Index (IHSG) in 2020. Therefore, future data is needed to inform investors and business people when making portfolio decisions. This paper develops a decomposition and Neural Network (NN) integration model to predict ICI during the VUCA era. The results are presented empirically to show the model's effectiveness in reducing prediction errors. First, the actual data is converted into three components; second, with the Neural Network Ensemble (NNE) approach where the initial step of decomposition results is trained using artificial NN with architecture, training data, and topology to produce individual networks; The output is selected using Principal Component Analysis (PCA) and becomes input to the ensemble model, then combined using a simple average and weighted average. The empirical results from ICI predictions illustrate: (1) decomposition has the potential to overcome data that is characterized by high volatility; (2) NNE is able to reduce errors (MSE≤0.100e-4, MAE≤0.01) compared to individual networks (MSE=0.0024 MAE=0.0376); (3) ensemble combinations using weighted averages (MSE≤3.00e-5,MAE≤0.002) are superior to simple averages (MSE≤5.00e-5,MAE≤0.01); (4) the integration carried out shows effectiveness in predicting ICI and provides better prediction results.

Downloads

Download data is not yet available.

References

A. Bash, “International Evidence of Covid-19 and Stock Market Returns: an Event Study Analysis,” Int. J. Econ. Financ. Issues, vol. 10, no. 4, pp. 34–38, 2020, doi: 10.32479/ijefi.9941.

C. K. Dewi, “Jkse and Trading Activities Before After Covid-19 Outbreak,” Res. J. Account. Bus. Manag., vol. 4, no. 1, p. 1, 2020, doi: 10.31293/rjabm.v4i1.4671.

C. Moreno and O. Mauricio, “VUCA World y lecciones de interdependencia COVID-19,” GIGAPP Estud. Work. Pap., vol. 7, no. 183, pp. 513–532, 2020, [Online]. Available: http://www.gigapp.org/ewp/index.php/GIGAPP-EWP/article/view/225

M. Gunawan and A. H. Anggono, “Cryptocurrency Safe Haven Property against Indonesian Stock Market During COVID-19,” J. Econ. Business, Account. Ventur., vol. 24, no. 1, p. 121, 2021, doi: 10.14414/jebav.v24i1.2661.

D. Rahmayani and S. Oktavilia, “Does the Covid-19 pandemic affect the stock market in Indonesia?,” J. Ilmu Sos. dan Ilmu Polit., vol. 24, no. 1, pp. 33–47, 2020, doi: 10.22146/JSP.56432.

Y. Li and Y. Pan, “A novel ensemble deep learning model for stock prediction based on stock prices and news,” Int. J. Data Sci. Anal., vol. 13, no. 2, pp. 139–149, 2022, doi: 10.1007/s41060-021-00279-9.

R. Godahewa, K. Bandara, G. I. Webb, S. Smyl, and C. Bergmeir, “Ensembles of localised models for time series forecasting,” Knowledge-Based Syst., vol. 233, 2021, doi: 10.1016/j.knosys.2021.107518.

M. J. Embrechts, “Forecasting foreign exchange rates with artificial neural networks,” Intell. Eng. Syst. Through Artif. Neural Networks, vol. 5, no. 1, pp. 771–778, 1995.

Q. Zhou, J. Hu, W. Hu, H. Li, and G. zhen Lin, “Interrupted time series analysis using the ARIMA model of the impact of COVID-19 on the incidence rate of notifiable communicable diseases in China,” BMC Infect. Dis., vol. 23, no. 1, pp. 1–10, 2023, doi: 10.1186/s12879-023-08229-5.

L. Bai … C. Li, “Predicting monthly hospital outpatient visits based on meteorological environmental factors using the ARIMA model,” Sci. Rep., vol. 13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-29897-y.

S. M. Valdivia-Bautista, J. A. Domínguez-Navarro, M. Pérez-Cisneros, C. J. Vega-Gómez, and B. Castillo-Téllez, “Artificial Intelligence in Wind Speed Forecasting: A Review,” Energies, vol. 16, no. 5, 2023, doi: 10.3390/en16052457.

M. Kureljusic and E. Karger, “Forecasting in financial accounting with artificial intelligence – A systematic literature review and future research agenda,” J. Appl. Account. Res., vol. 25, no. 1, pp. 81–104, 2024, doi: 10.1108/JAAR-06-2022-0146.

L. B. Sina, C. A. Secco, M. Blazevic, and K. Nazemi, “Hybrid Forecasting Methods—A Systematic Review,” Electron., vol. 12, no. 9, 2023, doi: 10.3390/electronics12092019.

F. A. Nahid, W. Ongsakul, and N. M. Manjiparambil, “Short term multi-steps wind speed forecasting for carbon neutral microgrid by decomposition based hybrid model,” Energy Sustain. Dev., vol. 73, no. March, pp. 87–100, 2023, doi: 10.1016/j.esd.2023.01.016.

M. Song and Y. Wang, “A study of granular computing in the agenda of growth of artificial neural networks,” Granul. Comput., vol. 1, no. 4, pp. 247–257, 2016, doi: 10.1007/s41066-016-0020-7.

W. Liu, C. Wang, Y. Li, Y. Liu, and K. Huang, “Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks,” Chaos, Solitons and Fractals, vol. 146, p. 110822, 2021, doi: 10.1016/j.chaos.2021.110822.

S. K. Purohit, S. Panigrahi, P. K. Sethy, and S. K. Behera, “Time Series Forecasting of Price of Agricultural Products Using Hybrid Methods,” Appl. Artif. Intell., vol. 35, no. 15, pp. 1388–1406, 2021, doi: 10.1080/08839514.2021.1981659.

A. S. Albahri … A. A. Yass, “Hybrid artificial neural network and structural equation modelling techniques: a survey,” Complex Intell. Syst., vol. 8, no. 2, pp. 1781–1801, 2022, doi: 10.1007/s40747-021-00503-w.

Z. Qian, Y. Pei, H. Zareipour, and N. Chen, “A review and discussion of decomposition-based hybrid models for wind energy forecasting applications,” Appl. Energy, vol. 235, no. October 2018, pp. 939–953, 2019, doi: 10.1016/j.apenergy.2018.10.080.

W. Liu, C. Wang, Y. Li, Y. Liu, and K. Huang, “Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks,” Chaos, Solitons &Fractals, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960077921001740

W. Sun and Z. Li, “Hourly PM2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China,” J. Clean. Prod., vol. 263, 2020, doi: 10.1016/j.jclepro.2020.121442.

M. Jamei, M. Ali, A. Malik, M. Karbasi, P. Rai, and Z. M. Yaseen, “Development of a TVF-EMD-based multi-decomposition technique integrated with Encoder-Decoder-Bidirectional-LSTM for monthly rainfall forecasting,” J. Hydrol., vol. 617, no. PC, p. 129105, 2023, doi: 10.1016/j.jhydrol.2023.129105.

R. Li, R. Gao, and P. N. Suganthan, “A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition,” Inf. Sci. (Ny)., vol. 624, pp. 833–848, 2023, doi: 10.1016/j.ins.2022.12.088.

Y. Zhang, G. Li, B. Muskat, and R. Law, “Tourism Demand Forecasting: A Decomposed Deep Learning Approach,” J. Travel Res., vol. 60, no. 5, pp. 981–997, 2021, doi: 10.1177/0047287520919522.

N. E. H. Zhaohua Wu, “Ensemble empirical mode decomposition: A Noise-Assited,” Biomed. Tech., vol. 55, no. 1, pp. 193–201, 2009.

A. Altan, S. Karasu, and E. Zio, “A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer,” Appl. Soft Comput., vol. 100, p. 106996, 2021, doi: 10.1016/j.asoc.2020.106996.

N. E. Huang … H. H. Liu, “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, 1998, doi: 10.1098/rspa.1998.0193.

M. Wu, Q. Feng, X. Wen, Z. Yin, L. Yang, and D. Sheng, “Deterministic analysis and uncertainty analysis of ensemble forecasting model based on variational mode decomposition for estimation of monthly groundwater level,” Water (Switzerland), vol. 13, no. 2, 2021, doi: 10.3390/w13020139.

T. Boyle, “Management systems,” Heal. Saf. Risk Manag., pp. 223–249, 2018, doi: 10.4324/9781315638515-18.

B. Liu, C. Fu, A. Bielefield, and Y. Q. Liu, “Forecasting of Chinese Primary Energy Consumption in 2021 with GRU artificial neural network,” Energies, vol. 10, no. 10, pp. 1–15, 2017, doi: 10.3390/en10101453.

A. Kisvari, Z. Lin, and X. Liu, “Wind power forecasting – A data-driven method along with gated recurrent neural network,” Renew. Energy, vol. 163, no. October 2020, pp. 1895–1909, 2021, doi: 10.1016/j.renene.2020.10.119.

S. Namasudra, S. Dhamodharavadhani, and R. Rathipriya, “Nonlinear Neural Network Based Forecasting Model for Predicting COVID-19 Cases,” Neural Process. Lett., no. 0123456789, 2021, doi: 10.1007/s11063-021-10495-w.

P. R. Jena, R. Majhi, R. Kalli, S. Managi, and B. Majhi, “Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster,” Econ. Anal. Policy, vol. 69, no. December, pp. 324–339, 2021, doi: 10.1016/j.eap.2020.12.013.

D. K. Sharma, H. S. Hota, K. Brown, and R. Handa, “Integration of genetic algorithm with artificial neural network for stock market forecasting,” Int. J. Syst. Assur. Eng. Manag., vol. 13, pp. 828–841, 2022, doi: 10.1007/s13198-021-01209-5.

X. Shu, W. Ding, Y. Peng, Z. Wang, J. Wu, and M. Li, “Monthly Streamflow Forecasting Using Convolutional Neural Network,” Water Resour. Manag., vol. 35, no. 15, pp. 5089–5104, 2021, doi: 10.1007/s11269-021-02961-w.

D. T. S. Kumar, “Video based Traffic Forecasting using Convolution Neural Network Model and Transfer Learning Techniques,” J. Innov. Image Process., vol. 2, no. 3, pp. 128–134, 2020, doi: 10.36548/jiip.2020.3.002.

S. K. Tamang, P. D. Singh, and B. Datta, “Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique,” Glob. J. Environ. Sci. Manag., vol. 6, pp. 53–64, 2020, doi: 10.22034/GJESM.2019.06.SI.06.

D. Cao … Q. Zhang, “Spectral temporal graph neural network for multivariate time-series forecasting,” Adv. Neural Inf. Process. Syst., vol. 2020-Decem, no. NeurIPS, pp. 1–13, 2020.

M. O. Moreira, P. P. Balestrassi, A. P. Paiva, P. F. Ribeiro, and B. D. Bonatto, “Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting,” Renew. Sustain. Energy Rev., vol. 135, no. September 2020, p. 110450, 2021, doi: 10.1016/j.rser.2020.110450.

S. Scher and G. Messori, “Ensemble Methods for Neural Network-Based Weather Forecasts,” J. Adv. Model. Earth Syst., vol. 13, no. 2, pp. 1–17, 2021, doi: 10.1029/2020MS002331.

D. Papapicco, N. Demo, M. Girfoglio, G. Stabile, and G. Rozza, “The Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations,” Comput. Methods Appl. Mech. Eng., vol. 392, pp. 1–18, 2022, doi: 10.1016/j.cma.2022.114687.

K. W. Khaw … Z. Z. Khattak, “Modelling and Evaluating Trust in Mobile Commerce: A Hybrid Three Stage Fuzzy Delphi, Structural Equation Modeling, and Neural Network Approach,” Int. J. Hum. Comput. Interact., vol. 38, no. 16, pp. 1529–1545, 2022, doi: 10.1080/10447318.2021.2004700.

F. S. Hillier and S. Editor, Forecasting With Artificial Neural.

A. Meng, J. Ge, H. Yin, and S. Chen, “Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm,” Energy Convers. Manag., vol. 114, pp. 75–88, 2016, doi: 10.1016/j.enconman.2016.02.013.

J. Wang and J. Hu, “A robust combination approach for short-term wind speed forecasting and analysis - Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts usi,” Energy, vol. 93, pp. 41–56, 2015, doi: 10.1016/j.energy.2015.08.045.

K. G. Sheela and S. N. Deepa, “Selection of number of hidden neurons in neural networks in renewable energy systems,” J. Sci. Ind. Res. (India)., vol. 73, no. 10, pp. 686–688, 2014.

B. M. Salih Hasan and A. M. Abdulazeez, “A Review of Principal Component Analysis Algorithm for Dimensionality Reduction,” J. Soft Comput. Data Min., vol. 02, no. 01, pp. 20–30, 2021, doi: 10.30880/jscdm.2021.02.01.003.

M. R. Mahmoudi, M. H. Heydari, S. N. Qasem, A. Mosavi, and S. S. Band, “Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries,” Alexandria Eng. J., vol. 60, no. 1, pp. 457–464, 2021, doi: 10.1016/j.aej.2020.09.013.

N. Sharma, J. Dev, M. Mangla, V. M. Wadhwa, S. N. Mohanty, and D. Kakkar, “A Heterogeneous Ensemble Forecasting Model for Disease Prediction,” New Gener. Comput., vol. 39, no. 3–4, pp. 701–715, 2021, doi: 10.1007/s00354-020-00119-7.

A. Ibrahim … E. S. M. El-Kenawy, “Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm,” IEEE Access, vol. 9, pp. 125787–125804, 2021, doi: 10.1109/ACCESS.2021.3111408.

M. Abed, M. A. Imteaz, A. N. Ahmed, and Y. F. Huang, “Application of long short-term memory neural network technique for predicting monthly pan evaporation,” Sci. Rep., vol. 11, no. 1, pp. 1–19, 2021, doi: 10.1038/s41598-021-99999-y.

P. H. Borghi, O. Zakordonets, and J. P. Teixeira, “A COVID-19 time series forecasting model based on MLP ANN,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 940–947, 2021, doi: 10.1016/j.procs.2021.01.250.

J. Bensley, “COVID-19: A salutary experience of VUCA,” ICCPM Newsletter., 2020, [Online]. Available: https://iccpm.com/wp-content/uploads/2020/08/ICCPM-Article-COVID-19-A-Salutary-Experience-of-VUCA_web.pdf

A. M. R. Putri, M. H. Shafiai, A. G. Ismail, and ..., “the Challenges of the Vuca Economy Based on the Evolution of Study,” …, vol. 2, no. 1, pp. 199–209, 2023, [Online]. Available: https://conference.univpancasila.ac.id/index.php/ecobestha/article/view/77

D. Berrar, “Cross-validation,” pp. 1–13.

Published
2024-10-14
How to Cite
[1]
I. Saluza, E. Munarsih, F. Faradillah, and L. Anggraini, “PREDICTION INDONESIA COMPOSITE INDEX USING INTEGRATION DECOMPOSITION- NEURAL NETWORK ENSEMBLE DURING VUCA ERA”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2721-2736, Oct. 2024.