THE SUFFICIENT AND NECESSARY CONDITIONS FOR A MODULE TO BE A WEAKLY UNIQUE FACTORIZATION MODULE

Keywords: Factorization Domain, Unique Factorization Module, Weakly Unique Factorization Module

Abstract

T A torsion-free module  over an integral domain  is called Unique Factorization Module (UFM) if satisfied some conditions: (1) Every non-zero element  has an irreducible factorization, that is , with  are irreducible in  and  is irreducible in , and (2) if  are two irreducible factorizations of , then  in , and we can rearrange the order of the ’s so that  in  for every . The definition of UFM is a generalization of the concept of factorization on the ring which is applied to the module. In this study, we will discuss another definition that is a generalization of UFM, namely by the Weakly Unique Factorization Module (w-UFM). First, some concepts that play an important role in defining w-UFM are given. After that, the definition and characterization of w-UFM is also given. The results of this study will provide the sufficient and necessary conditions of the w-UFM.

Downloads

Download data is not yet available.

References

A.-M. Nicolas, “Modules factoriels,” Seminiare Dubrell-Pisot, vol. 20, pp. 1–12, 1967, [Online]. Available: http://www.numdam.org/conditions

A. Nikseresht and A. Azizi, “On factorization in modules,” Commun Algebra, vol. 39, no. 1, pp. 292–311, Jan. 2010, doi: 10.1080/00927870903527535.

C.-P. Lu, “Factorial Modules,” Rocky Mt J Math, vol. 7, no. 1, 1977.

D. D. Anderson and S. Valdes-Leon, “Factorization in commutative rings with zero divisors,” Rocky Mt J Math, vol. 26, no. 2, 1996.

D. D. Anderson and S. Valdes-Leon, “Factorization in Commutative Rings with Zero Divisors, II,” in Factorization in integral domains, Routledge, 2018, pp. 197–219. doi: 10.1201/9780203756263-7.

D. L. Costa, “Unique Factorization in Modules and Symmetric Algebras,” Trans Am Math Soc, vol. 224, no. 2, 1976.

D. S. Malik, J. N. Mordeson, and M. K. Sen, Fundamentals of Abstract Algebra,. New York: McGraw-Hill, 1997.

H. O. Kürşat, Ü. Tekir, and A. G. Aǧargün, “Weakly unique factorization modules,” Tamkang Journal of Mathematics, vol. 41, no. 3, pp. 245–252, 2010, doi: 10.5556/j.tkjm.41.2010.729.

S. Wahyuni, H. Marubayashi, I. Ernanto, and I. P. Y. Prabhadika, “On Unique Factorization Modules: A Submodule Approach,” Axioms, vol. 11, no. 6, Jun. 2022, doi: 10.3390/axioms11060288.

M. Alan and E. Özbulur, “On unique factorization modules,” International Journal of Pure and Applied Mathematics, vol. 108, no. 1, pp. 23–28, 2016, doi: 10.12732/ijpam.v108i1.4.

M. Roueentan and S. Namazi, “A Theorem on Unique Factorization Domains Analogue for Modules,” 2011.

W. A. Adkins Steven H Weintraub, Algebra: An Approach via Module Theory. Springer-Ferlag, 1992.

B. T. Stenstrom, “Pure submodules,” Arkiv for Matematik, vol. 7, no. 10, 1966.

M. A. Majid and D. J. Smith, “Pure Submodule of Multiplicational Modules,” Beitr a ge zur Algebra und Geometrie Contributions to Algebra and Geometry, vol. 45, pp. 61–74, 2004.

F. Farshadifar, “A Generalization of Pure Submodules,” Journal of Algebra and Related Topics, vol. 8, no. 2, pp. 1–8, 2020.

Published
2025-01-13
How to Cite
[1]
I. P. Y. Prabhadika and S. Wahyuni, “THE SUFFICIENT AND NECESSARY CONDITIONS FOR A MODULE TO BE A WEAKLY UNIQUE FACTORIZATION MODULE”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 419-426, Jan. 2025.