THE PARTITION DIMENSION OF CYCLE BOOKS GRAPH B_(m,n) WITH A COMMON PATH P_2

  • Jaya Santoso Department of Informatics, Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Indonesia https://orcid.org/0009-0001-7329-3137
  • Darmaji Darmaji Department of Mathematics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia
Keywords: Cycle, Graph, Partition Dimension, Resolving Partition

Abstract

Suppose  is a connected graph with  elements of a set of vertices  denoted by  and  a subset of . The distance between  and  is the shortest distance  to every vertex  in . Let  be a partition of , where each subset  belongs to . The representation of a vertex  with respect to  is defined as the set of distances from  to each vertex in . If each representation of each vertex of  is different, then the partition  is called the resolving partition of , and the partition dimension  is the smallest integer  such that  has a resolving partition with  members. In this research, we show the partition dimensions of the cycle books graph . Cycle books graph  is a graph consisting of  copies of a cycle with a common path . The partition dimension of the cycle books graph  for  and  is shown.

Downloads

Download data is not yet available.

References

G. Chartrand, E. Salehi, and P. Zhang, “THE PARTITION DIMENSION OF A GRAPH,” Aequationes Math., vol. 59, no. 1, pp. 45–54, Feb. 2000, doi: 10.1007/PL00000127.

H. Vertana and T. A. Kusmayadi, “ON THE PARTITION DIMENSION OF C m + P n GRAPH,” J. Phys. Conf. Ser., vol. 855, no. 1, p. 012058, Jun. 2017, doi: 10.1088/1742-6596/855/1/012058.

Amrullah, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, “THE PARTITION DIMENSION OF A SUBDIVISION OF A COMPLETE GRAPH,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 53–59. doi: 10.1016/j.procs.2015.12.075.

D. O. Haryeni, E. T. Baskoro, and S. W. Saputro, “ON THE PARTITION DIMENSION OF DISCONNECTED GRAPHS,” J. Math. Fundam. Sci., vol. 49, no. 1, pp. 18–32, 2017, doi: 10.5614/j.math.fund.sci.2017.49.1.2.

I. González Yero, “ON THE STRONG PARTITION DIMENSION OF GRAPHS,” The Elecronic Journal of Combinatorics, vol. 21, no. 3, Jun. 2014, doi: 10.37236/3474.

Darmaji and R. Alfarisi, “ON THE PARTITION DIMENSION OF COMB PRODUCT OF PATH AND COMPLETE GRAPH,” in AIP Conference Proceedings, American Institute of Physics Inc., Aug. 2017. doi: 10.1063/1.4994441.

A. Nadeem, A. Kashif, S. Zafar, and Z. Zahid, “ON 2-PARTITION DIMENSION OF THE CIRCULANT GRAPHS,” J. Intell. Fuzzy Syst., vol. 40, no. 5, pp. 9493–9503, Apr. 2021, doi: 10.3233/JIFS-201982.

A. Al Khabyah, M. K. Jamil, A. N. A. Koam, A. Javed, and M. Azeem, “PARTITION DIMENSION OF COVID ANTIVIRAL DRUG STRUCTURES,” Math. Biosci. Eng., vol. 19, no. 10, pp. 10078–10095, 2022, doi: 10.3934/mbe.2022471.

A. Nadeem, A. Kashif, S. Zafar, and Z. Zahid, “ON 2-PARTITION DIMENSION OF ROTATIONALLY-SYMMETRIC GRAPHS,” Discret. Math. Algorithms Appl., vol. 15, no. 07, Oct. 2023, doi: 10.1142/S1793830922501531.

Hasmawati, N. Hinding, B. Nurwahyu, A. Syukur Daming, and A. Kamal Amir, “THE PARTITION DIMENSION OF THE VERTEX AMALGAMATION OF SOME CYCLES,” Heliyon, vol. 8, no. 6, p. e09596, Jun. 2022, doi: 10.1016/j.heliyon.2022.e09596.

J.-B. Liu, M. F. Nadeem, and M. Azeem, “BOUNDS ON THE PARTITION DIMENSION OF CONVEX POLYTOPES,” Comb. Chem. High Throughput Screen., vol. 25, no. 3, pp. 547–553, Mar. 2022, doi: 10.2174/1386207323666201204144422.

N. Mehreen, R. Farooq, and S. Akhter, “ON PARTITION DIMENSION OF FULLERENE GRAPHS,” AIMS Math., vol. 3, no. 3, pp. 343–352, 2018, doi: 10.3934/Math.2018.3.343.

C. M. Mohan, S. Santhakumar, M. Arockiaraj, and J.-B. Liu, “PARTITION DIMENSION OF CERTAIN CLASSES OF SERIES PARALLEL GRAPHS,” Theor. Comput. Sci., vol. 778, pp. 47–60, Jul. 2019, doi: 10.1016/j.tcs.2019.01.026.

C. Monica M. and S. Santhakumar, “PARTITION DIMENSION OF HONEYCOMB DERIVED NETWORKS,” Int. J. Pure Apllied Math., vol. 108, no. 4, Oct. 2016, doi: 10.12732/ijpam.v108i4.7.

H. Haspika, H. Hasmawati, and N. Aris, “THE PARTITION DIMENSION ON THE GRID GRAPH,” J. Mat. Stat. dan Komputasi, vol. 19, no. 2, pp. 351–358, Jan. 2023, doi: 10.20956/j.v19i2.23904.

R. Adawiyah, I. I. Makhfudloh, D. Dafik, R. Prihandini, and A. Prihandoko, “ON RAINBOW ANTIMAGIC COLORING OF SNAIL GRAPH(S_N ), COCONUT ROOT GRAPH (Cr_(N,M) ), FAN STALK GRAPH (Kt_N ) AND THE LOTUS GRAPH(Lo_N ),” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1543–1552, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1543-1552.

M. I. N. Annadhifi, R. Adawiyah, D. Dafik, and I. N. Suparta, “RAINBOW VERTEX CONNECTION NUMBER OF BULL GRAPH, NET GRAPH, TRIANGULAR LADDER GRAPH, AND COMPOSITION GRAPH (P_n [P_1 ]),” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1665–1672, 2024, doi: 10.30598/barekengvol18iss3pp1665-1672.

E. C. M. Maritz and T. Vetrík, “THE PARTITION DIMENSION OF CIRCULANT GRAPHS,” Quaest. Math., vol. 41, no. 1, pp. 49–63, Jan. 2018, doi: 10.2989/16073606.2017.1370031.

J. Santoso and Darmaji, “THE PARTITION DIMENSION OF CYCLE BOOKS GRAPH,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2018. doi: 10.1088/1742-6596/974/1/012070.

J. Santoso, “DIMENSI METRIK DAN DIMENSI PARTISI GRAF CYCLE BOOKS,” Sepuluh Nopember Institut of Technology, 2018. [Online]. Available: https://repository.its.ac.id/59061/1/06111650010004-Master_Thesis.pdf

B. Swita, U. Rafflesia, N. Henni Ms, D. Stio Adji, and M. Simanihuruk, “ON EDGE MAGIC TOTAL LABELING OF (7, 3)-CYCLE BOOKS,” Int. J. Math. Math. Sci., vol. 2019, 2019, doi: 10.1155/2019/1801925.

M. Simanihuruk, T. A. Kusmayadi, B. Swita, M. Romala, and F. Damanik, “A CONJECTURE ON SUPER EDGE-MAGIC TOTAL LABELING OF 4-CYCLE BOOKS,” Int. J. Math. Math. Sci., vol. 2021, 2021, doi: 10.1155/2021/8483926.

Published
2025-04-01
How to Cite
[1]
J. Santoso and D. Darmaji, “THE PARTITION DIMENSION OF CYCLE BOOKS GRAPH B_(m,n) WITH A COMMON PATH P_2”, BAREKENG: J. Math. & App., vol. 19, no. 2, pp. 791-804, Apr. 2025.