FORECASTING RICE PRICES IN TRADITIONAL MARKETS IN BANYUMAS REGENCY USING FUZZY TIME SERIES CHEN
Abstract
Indonesia is one of those countries where a majority of its population earns a living through agriculture. One of Indonesia's largest commodities is rice. Rice prices are a significant indicator in the economy, especially in agrarian areas like Banyumas Regency. Fluctuating rice prices can impact the economic livelihoods of both farmers and consumers in the region. The rapid fluctuations in rice prices and the uncertainty in the future necessitate the need for rice price forecasting. This study employs fuzzy time series to forecast rice prices. The fuzzy time series model used is the Chen model, and the accuracy of the predictions will be evaluated using the MAPE value. Based on the forecasting results using the fuzzy time series method with the Chen model, the predicted rice price for May 2024 is Rp 14,082. Furthermore, the accuracy level of the rice price forecasting using the fuzzy time series method with the Chen model shows highly accurate predictions, with an error based on the MAPE value of 0.957539%. The limitations of this study lie in the use of limited historical data and the assumption that price patterns will follow similar trends in the future. The contribution of this study is the application of the fuzzy time series method to rice commodities in Indonesia, which demonstrates high accuracy in conditions of high price fluctuation, thus providing valuable insights for policymakers and market participants in economic planning within the agricultural sector.
Downloads
References
BPS, Berita Resmi Statistik 2023. Badan Pusat Statistik, 2023.
M. Syafi’i, lilis H. Hasibuan, R. Putri, and L. Suriani, “Peramalan Harga Eceran Rata-Rata Beras Dengan Metode Trend,” Majamath: Jurnal Matematika dan Pendidikan Matematika, vol. 6, no. 1, pp. 23–32, 2023, [Online]. Available: https://sumbar.bps.go.id/.
E. Tarigan, M. Balqis, T. Hutapea, and D. Sihombing, “Peramalan Harga Beras di Indonesia Dengan ARIMA,” SEPREN: Journal of Mathematics Education and Applied, vol. 05, no. 02, pp. 117–126, 2024, doi: 10.36655/sepren.v4i1.
Sarbaini, D. Yanti, and Nazaruddin, “Prediksi Harga Beras Belida Di Kota Pekanbaru Menggunakan Metode Fuzzy Time Series Cheng,” Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT), vol. 2, no. 3, pp. 234–241, 2023.
H. Sofhya, “Comparison of Fuzzy Time Series Chen and Cheng to Forecast Indonesia Rice Productivity,” Eduma : Mathematics Education Learning and Teaching, vol. 11, no. 1, pp. 119–128, 2022, doi: 10.24235/eduma.v11i1.
S. A. Putri, Junaidi, and I. Setiawan, “Application of The Fuzzy Time Series Chen Model In Forecasting The Rupiah Exchange Rate Against The US Dollar (USD),” Journal of Statistical Methods and Data Science, vol. 1, no. 2, pp. 9–20, 2023.
E. N. Sofiyanti, S. Ulinuha, R. Okiyanto, M. Al Haris, and R. Wasono, “Peramalan Harga Emas Menggunakan Metode Fuzzy Time Series Chen dalam Investasi untuk Meminimalisir Risko,” Journal of Mathematics, Cpmputations, and Statistics, vol. 7, no. 1, pp. 55–66, 2024, [Online]. Available: http://www.ojs.unm.ac.id/jmathcos
E. Darnila, R. Dinata, and S. Ramadani, “Prediksi Harga Pasar Komoditi Tanaman Pangan Di Aceh Utara Pada Masa Pandemi Covid-19 Dengan Metode Fuzzy Time Series Model Chen,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 7, no. 1, pp. 17–26, 2023.
D. Al Amali, H. Sibyan, and F. Asnawi, “Sistem Prediksi Penjualan Acc Hp Konter Marwa Cell Menggunakan Metode Fuzzy Time Series Chen,” Journal of Engineering and Informatic, vol. 2, no. 1, 2023, doi: 10.56854/jei.v2i1.121.
Arnita, N. Afnisah, and F. Marpaung, “A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1462/1/012044.
A. P. Andini and F. Muliani, “Fuzzy Time Series Chen Untuk Forecasting Hasil Produksi Tebu Di Kabupaten Langkat,” Jurnal Sains Matematika dan Statistika, vol. 10, no. 1, p. 47, Feb. 2024, doi: 10.24014/jsms.v10i1.23375.
M. R. Yuliyanto, T. Wuryandari, and I. T. Utami, “Peramalan Pendapatan Bulanan Menggunakan Fuzzy Time Series Chen Orde Tinggi,” Jurnal Gaussian, vol. 12, no. 1, pp. 61–70, May 2023, doi: 10.14710/j.gauss.12.1.61-70.
A. C. Vayuanita and W. Sulistijanti, “Peramalan Hasil Produksi Padi Di Provinsi Jawa Tengah Menggunakan Metode Hybrid Sarima-Fuzzy Time Series Chen,” AGRITECH: Jurnal Ilmu-Ilmu Pertanian, vol. XXV, no. 2, pp. 194–204, 2023, doi: 10.30595/agritech.v25i2.21835.
M. A. Ramadhani, B. H. Mustawinar, D. R. Arifanti, and Yulianti, “Prediksi Harga Minyak Dunia Dengan Fuzzy Time Series,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika , vol. 7, no. 1, pp. 305–309, 2024, doi: 10.30605/proximal.v5i2.3471.
F. Andika, N. Nurviana, and R. P. Sari, “Perbandingan Model Chen dan Lee pada Metode Fuzzy Time Series untuk Peramalan Nilai Tukar Petani (NTP) di Provinsi Aceh,” Jurnal Sains Matematika dan Statistika, vol. 10, no. 1, p. 71, Mar. 2024, doi: 10.24014/jsms.v10i1.23463.
L. Aulia and W. Sulistijanti, “Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Provinsi Bali Menggunakan Metode Fuzzy Time Series Chen,” 2023.
S. Rusdiana, D. Febriana, I. Maulidi, and V. Apriliani, “Comparison Of Weighted Markov Chain And Fuzzy Time Series-Markov Chain Methods In Air Temperature Prediction In Banda Aceh City,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 3, pp. 1301–1312, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1301-1312.
L. Zahra, Maiyastri, and I. Rahmi, “A Comparison of Fuzzy Time Series Cheng And Chen-Hsu In Forecasting Total Airplane Passengers of Soekarno-Hatta Airport,” BAREKENG: Journal of Mathematics and Its Applications, vol. 18, no. 1, pp. 19–28, Mar. 2024, doi: 10.30598/barekengvol18iss1pp0019-0028.
Copyright (c) 2025 Dian Kartika Sari, Aminatus Sa'adah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.