3D MODELING COMPUTATION TO EVALUATE GROYNE STRUCTURE PERFORMANCE: CASE STUDY OF PASSO COASTAL AREA

Keywords: Coastal Sediment, Computation Model Delft-3D, Groyne, Hydrodynami

Abstract

Groyne is very important to protect the coastline with the concept of maintaining the balance of sediment transport. Groyne building in theory can work well if worked in groups or more than one. In this study, the Passo beach location was chosen because there is an existing groyne building that, if seen on Google Earth, has been damaged by the scattering of the constituent rocks. If the groyne cannot work to balance the sediment transport, it may occur that mass destruction to the infrastructure behind the groyne itself, such as regional roads, may occur. To find out the level of damage, an in-depth study needs to be carried out. In this paper, Delft-3D mathematical modeling was carried out to investigate groyne damage by looking at the performance of groyne in maintaining the balance of sediment transport in the Passo beach area. Hydrodynamic and coastal sediment modeling analyses were carried out in wet and dry season conditions. Modeling was carried out over one month with a morphology factor of 12 to obtain sediment transport for one year. In the existing dry season conditions, it shows that at the observation point, there is erosion of 2 meters, and in the wet season sediment transport is balanced. It is implied that the groyne structure must be replaced for being surpass the structure lifetime.

Downloads

Download data is not yet available.

References

S. A. Suleman and S. Bur, “MITIGASI BENCANA ABRASI DAN SEDIMENTASI PANTAI PADA DI PESISIR PANTAI KABUPATEN PANGKEP,” Ris. Sains dan Teknol. Kelaut., 2023, doi: 10.62012/sensistek.v6i1.24250.

S. A. Antarissubhi. H, Serang Rudi, Leda Jeremias, Salamena Ganisa Elsina, Pagoray Gebion Lysje, Gusty Sri, Rachman Ranno Marlany, Krisis Iklim Global di Indonesia (Dampak dan Tantangan). 2023. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=xsjcEAAAQBAJ&oi=fnd&pg=PP1&ots=nIAoTe_upJ&sig=MgAfoC6vQ0WDLZDnQ-tqWXzA81o&redir_esc=y#v=onepage&q&f=false

N. Khakhim, F. Yasidi, D. Mardiatno, and A. Kurniawan, “Modeling Lasolo Watershed Sedimentation and Mangrove Root Growth at the Lasolo Coast in North Konawe, Indonesia,” J. Environ. Manag. Tour., vol. 14, no. 1, 2023, doi: 10.14505/jemt.v14.1(65).10.

A. Isdianto, I. M. Asyari, M. F. Haykal, F. Adibah, M. J. Irsyad, and S. Supriyadi, “ANALISIS PERUBAHAN GARIS PANTAI DALAM MENDUKUNG KETAHANAN EKOSISTEM PESISIR,” Jukung (Jurnal Tek. Lingkungan), vol. 6, no. 2, 2020, doi: 10.20527/jukung.v6i2.9260.

Dalrino, R. Herdianto, and D. B. Silitonga, “Study of groin structures effectiveness for against abrasion in Padang Beach,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1755-1315/708/1/012035.

Y. N. Purnawanti, L. D. Ayunda, and A. R. Santoso, “Studi Perencanaan Revetment dan Groin Sebagai Upaya Penanganan Erosi Pantai Camplong di Kabupaten Sampang Madura,” J. Tek. Transp., vol. 1, no. 1, p. 70, Apr. 2020, doi: 10.54324/jtt.v1i1.431.

W. Tribhaskoro, S. Widada, and W. Atmodjo, “Sedimentasi di Sekitar Bangunan Groin di Pantai Komodo Kota Tegal,” Indones. J. Oceanogr., vol. 4, no. 3, pp. 01–12, Aug. 2022, doi: 10.14710/ijoce.v4i3.13261.

L. Brakenhoff, R. Schrijvershof, J. van der Werf, B. Grasmeijer, G. Ruessink, and M. van der Vegt, “From ripples to large-scale sand transport: The effects of bedform-related roughness on hydrodynamics and sediment transport patterns in delft3d,” J. Mar. Sci. Eng., vol. 8, no. 11, pp. 1–25, Nov. 2020, doi: 10.3390/jmse8110892.

W. L. Dhanistha, Suntoyo, D. M. Rosyid, and R. Akbar, “Design of wave spectrum in the Java Sea,” in IOP Conference Series: Earth and Environmental Science, 2024. doi: 10.1088/1755-1315/1298/1/012028.

K. Kuswartomo, B. N. Sulistiya, I. Isnugroho, and A. K. Fatchan, “Prediksi Tinggi Gelombang Berdasarkan CERC (SPM 1984) di Pantai Baru, Bantul, Daerah Istimewa Yogyakarta,” Din. Tek. Sipil Maj. Ilm. Tek. Sipil, vol. 14, no. 1, 2021, doi: 10.23917/dts.v14i1.15271.

A. Rahmatullah, C. Umam, W. S. Pranowo, J. Setiyadi, and A. Agustinus, “Karakteristik Angin dan Gelombang di Perairan Selatan Pulau Biak untuk Perencanaan Awal Pembangunan Dermaga Lanal,” J. Chart Datum, vol. 8, no. 2, 2022, doi: 10.37875/chartdatum.v8i2.143.

F. Suciaty and A. Setiawan, “SEDIMENTASI DI PANTAI SANTOLO WILAYAH PESISIR SELATAN JAWA BARAT DAN MODEL PENANGGULANGANNYA,” J. Kelaut. Nas., vol. 16, no. 1, 2021, doi: 10.15578/jkn.v16i1.9778.

J. Wang, A. Chu, Z. Dai, and J. Nienhuis, “Delft3D model-based estuarine suspended sediment budget with morphodynamic changes of the channel-shoal complex in a mega fluvial-tidal delta,” Eng. Appl. Comput. Fluid Mech., vol. 18, no. 1, 2024, doi: 10.1080/19942060.2023.2300763.

J. G. Rueda-Bayona, A. F. Osorio, and A. Guzmán, “Set-up and input dataset files of the Delft3d model for hydrodynamic modelling considering wind, waves, tides and currents through multidomain grids,” Data Br., vol. 28, 2020, doi: 10.1016/j.dib.2019.104921.

Deltares, “DELFT3D-FLOW: 3D/2D modelling suite for integral water solutions. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual,” 2020.

L. Brakenhoff, R. Schrijvershof, J. van der Werf, B. Grasmeijer, G. Ruessink, and M. van der Vegt, “From ripples to large-scale sand transport: The effects of bedform-related roughness on hydrodynamics and sediment transport patterns in delft3d,” J. Mar. Sci. Eng., vol. 8, no. 11, 2020, doi: 10.3390/jmse8110892.

Deltares, “User Manual : Delft3D - Flow,” User Man., vol. Version :, 2020.

A. Chrysanti et al., “Prediction of shoreline change using a numerical model: case of the Kulon Progo Coast, Central Java,” MATEC Web Conf., vol. 270, 2019, doi: 10.1051/matecconf/201927004023.

T. P. Huff, R. A. Feagin, and J. Figlus, “Delft3D as a Tool for Living Shoreline Design Selection by Coastal Managers,” Front. Built Environ., vol. 8, 2022, doi: 10.3389/fbuil.2022.926662.

P. Kumar and N. Leonardi, “Coastal forecast through coupling of Artificial Intelligence and hydro-morphodynamical modelling,” Coast. Eng. J., vol. 65, no. 3, 2023, doi: 10.1080/21664250.2023.2233724.

Published
2025-01-13
How to Cite
[1]
G. E. Salamena, G. A. Salamena, G. Loupatty, and C. F. Palembang, “3D MODELING COMPUTATION TO EVALUATE GROYNE STRUCTURE PERFORMANCE: CASE STUDY OF PASSO COASTAL AREA”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 643-654, Jan. 2025.