IMPROVING CLUSTER ACCURACY IN TUITION FEES: A MULTILAYER PERCEPTRON NEURAL NETWORK AND RANDOM FOREST APPROACH

  • Sumin Sumin Mathematics Tadris Study Program, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri Pontianak, Indonesia http://orcid.org/0000-0001-5410-7522
  • Prihantono Prihantono Master of Sharia Economics Study Program, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri Pontianak, Indonesia
  • Khairawati Khairawati Islamic Religious Education Study Program, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri Pontianak, Indonesia
Keywords: Artificial Neural Networks, Single tuition fee, Classification, Random Forest

Abstract

Manual classification of Single Tuition Fees (STF) has a high risk of misclassification due to the need for a more in-depth assessment of students' economic criteria. This research uses Artificial Neural Networks (ANN), specifically the Multilayer Perceptron (NN-MLP) model, to detect and correct errors in Single Tuition Fee (STF) classification. This study aims to apply the NN model to identify and correct classification errors in the STF clustering of State Islamic Religious Universities in Indonesia (PTKIN). This research was conducted using exploratory methods and quantitative approaches involving a population of PTKIN students throughout Indonesia. A sample of 282 respondents was selected using a simple random sampling method. The results showed that NN-MLP is an effective tool for identifying and correcting misclassification in determining PTKIN tuition fees with significantly improved classification accuracy characterized by an accuracy value of 71.28% and MSE of 0.287; this model can be used as a basis for developing information systems that are fairer and more accurate in managing tuition fees in higher education. This research also proves that the NN method is superior to traditional statistical methods and simple machine learning in handling complex and diverse data. In addition, the Random Forest model successfully identified the most influential input variables in STF classification. Father's occupation, mother's occupation, number of dependents, and utility bills such as water and electricity significantly contributed to the STF classification. In contrast, variables such as vehicle facilities showed a lower contribution.

Downloads

Download data is not yet available.

References

R. A. Yuliana and I. Hermawati, “Evaluasi kebijakan publik Universitas Negeri (PTN) terkait kebijakan kenaikan biaya kuliah,” HUMANITIS: Jurnal Homaniora, Sosial dan Bisnis, vol. 2, no. 7, pp. 614–621, 2024.

A. N. Tsaqif, A. Setiawan, and F. N. Fajar, “Persepsi mahasiswa terhadap implementasi uang kuliah tunggal pada jurusan manajemen pendidikan Islam Fakultas Tarbiyah dan Keguruan Uin Alauddin Makassar,” Educational Leadership: Jurnal Manajemen Pendidikan, vol. 4, no. 1, pp. 42–58, 2024.

R. Ayu, “Analisis Kebijakan Pada Peraturan Menteri Pendidikan No. 39 Tahun 2017 Tentang Biaya Kuliah Tunggal Dan Uang Kuliah Tunggal Pada Perguruan Tinggi Universitas Negeri Padang.,” IJAM-EDU (Indonesian Journal of Administration and Management in Education), vol. 1, no. 3, pp. 194–209, 2024.

W. N. Nursafitri and N. S. Ramadhan, “Analisis Klasifikasi STF Mahasiswa Berdasarkan Tingkat Penghasilan Orang Tua Menggunakan Algoritma C4. 5,” Inventor: Jurnal Inovasi dan Tren Pendidikan Teknologi Informasi, vol. 2, no. 1, pp. 1–9, 2024.

Y. D. Retnoningsih and A. Marom, “Analisis Kebijakan Penyelenggaraan Pendidikan Berbasis Uang Kuliah Tunggal Bagi Perguruan Tinggi Negeri Fakultas Ilmu Sosial Dan Ilmu Politik Universitas Diponegoro Semarang Jawa Tengah,” Journal of Public Policy and Management Review, vol. 6, no. 2, pp. 482–497, 2017.

S. Zaleha, “Problema penentuan uang kuliah tunggal: antara harapan dan kenyataan pada Institut Agama Islam Negeri Bengkulu,” -, 2022.

M. Nasir, “Biaya Kuliah Tunggal Dan Uang Kuliah Tunggal Pada Perguruan Tinggi Negeri Di Lingkungan Kementerian Riset, Teknologi, Dan Pendidikan Tinggi,” Jakarta, Indonesia, 2017. [Online]. Available: kemenristekdikti.go.id

M. Nasir, “Uang Kuliah Tunggal (STF) Wujud Keadilan Biaya Perkuliahan,” Jakarta, 2017. [Online]. Available: https://lldikti1.ristekdikti.go.id/details/apps/1806

R. Efendi, D. Andreswari, and I. Barus, “Sistem Pendukung Keputusan Penentuan Uang Kuliah Tunggal Dengan Menggunakan Metode Weight Product,” in SNIA (Seminar Nasional Informatika dan Aplikasinya), 2019, pp. 14–19.

H. Kurniawan and S. Defit, “Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal,” Journal of Applied Computer Science and Technology, vol. 1, no. 2, pp. 80–89, 2020.

R. Andrea and N. Nursobah, “Penerapan Algoritma K-Medoids Untuk Pengelompokan Data Penerima Bantuan Uang Kuliah Tunggal Bagi Mahasiswa Terdampak Covid-19,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 632–638, 2022.

E. Dumitrescu, S. Hué, C. Hurlin, and S. Tokpavi, “Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,” Eur J Oper Res, vol. 297, no. 3, pp. 1178–1192, 2022.

Z. Nurizati, D. Vernanda, and T. Hendriawan, “Analisis Kelayakan Penurunan STF Pada Mahasiswa dengan Menggunakan Metode Decision Tree,” Jurnal Tekno Kompak, vol. 18, no. 1, pp. 90–100, 2024.

M. Z. Abedin, C. Guotai, F. Moula, A. S. M. S. Azad, and M. S. U. Khan, “Topological applications of multilayer perceptrons and support vector machines in financial decision support systems,” International Journal of Finance & Economics, vol. 24, no. 1, pp. 474–507, 2019.

A. Al Bataineh, D. Kaur, and S. M. J. Jalali, “Multi-layer perceptron training optimization using nature inspired computing,” IEEE Access, vol. 10, pp. 36963–36977, 2022.

J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A study on different deep learning algorithms used in deep neural nets: MLP SOM and DBN,” Wirel Pers Commun, vol. 128, no. 4, pp. 2913–2936, 2023.

R. A. Dunne, A statistical approach to neural networks for pattern recognition. John Wiley & Sons, 2007.

A. Behnamian, K. Millard, S. N. Banks, L. White, M. Richardson, and J. Pasher, “A systematic approach for variable selection with random forests: achieving stable variable importance values,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 11, pp. 1988–1992, 2017.

A. Hapfelmeier, T. Hothorn, K. Ulm, and C. Strobl, “A new variable importance measure for random forests with missing data,” Stat Comput, vol. 24, pp. 21–34, 2014.

I. Goodfellow, Deep Learning. MIT Press, 2016.

S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

Published
2025-01-13
How to Cite
[1]
S. Sumin, P. Prihantono, and K. Khairawati, “IMPROVING CLUSTER ACCURACY IN TUITION FEES: A MULTILAYER PERCEPTRON NEURAL NETWORK AND RANDOM FOREST APPROACH”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 665-674, Jan. 2025.